

Serial Enabled Air Pressure Sensor Module User's Guide

BAROMETER MODULE USER'S GUIDE

Table of Contents

1.1 Overview 1.2 Features 1.3 Applications Chapter 2. Hardware Detail 2.1 Pin Description Chapter 3. Electrical Characteristics 3.1 Operating Conditions of MS5561 3.2 Operating Conditions of Module 3.3 Digital Inputs 3.4 Digital Outputs 3.5 Pressure Output Characteristics
1.2 Features 1.3 Applications Chapter 2. Hardware Detail 2.1 Pin Description Chapter 3. Electrical Characteristics 3.1 Operating Conditions of MS5561 3.2 Operating Conditions of Module 3.3 Digital Inputs 3.4 Digital Output 3.5 Pressure Output Characteristics
1.3 Applications Chapter 2. Hardware Detail 2.1 Pin Description Chapter 3. Electrical Characteristics 3.1 Operating Conditions of MS5561 3.2 Operating Conditions of Module 3.3 Digital Inputs 3.4 Digital Outputs 3.5 Pressure Output Characteristics
Chapter 2. Hardware Detail
2.1 Pin Description 2.1 Pin Description Chapter 3. Electrical Characteristics 3.1 Operating Conditions of MS5561 3.2 Operating Conditions of Module 3.3 Digital Inputs 3.4 Digital Outputs 3.5 Pressure Output Characteristics
Chapter 3. Electrical Characteristics
 3.1 Operating Conditions of MS5561 3.2 Operating Conditions of Module 3.3 Digital Inputs 3.4 Digital Outputs 3.5 Pressure Output Characteristics
 3.2 Operating Conditions of Module 3.3 Digital Inputs 3.4 Digital Outputs 3.5 Pressure Output Characteristics
 3.3 Digital Inputs
3.4 Digital Outputs
3.5 Pressure Output Characteristics
-
3.6 Temperature Output Characteristics
3.7 Typical Characteristics
Chapter 4. SPI Interface
Chapter 5. UART Interface
5.1 UART Configuration
5.2 UART Command
5.3 Examples
5.4 How to Use
Chapter 6. Mechanical Drawing1
Chapter 7. Notes
Chapter 8. Contact Us1

Serial Enabled Air Pressure Sensor Module

NOTES:

Product Version	:	Ver 1.0
Document Version	:	Ver 1.0

Chapter 1. Overview

1.1 Overview

Thanks for purchasing the air pressure sensor module by Sure Electronics. This module is an accurate pressure and temperature measuring device utilizing MS5561 sensor and PIC16F690. Pressure and temperature values can be directly obtain via SPI or UART interface on the module, eliminating complicated calculation process. Original calibration data can be directly obtained from MS5561. It allows for use of other microprocessors to do operations to MS5561.

A DIP-like design is adopted facilitating system integration. **FIGURE 1-1 OVERVIEW**

Note: All the diagrams in this manual are for reference only.

1.2 Features

- DC 3.3V or 5V power supply
- SPI interface & UART interface
- High measurement accuracy and stability
- DIP-like packaging facilitates integration

1.3 Applications

- Mobile phones
- GPS receivers
- Altimeter applications
- Personal Navigation Devices (PND)
- Digital cameras with altimeter function

Chapter 2. Hardware Detail

2.1 Pin Description

TABLE 2-1 PIN DESCRIPTION

				Pin	Mark	Function
				1	22 760 KU-	sensor clock
				I	32.700 KHZ	input
	-					Selection of SPI
1	32768Hz	GND	24			and UART
2	SPISEI	GND	23			interface. When
<u> </u>						this pin is given
3	RX	+3.3V	22	2	SPISEL	low level, UART
4	тх	+3.3V	21			is available.
<u> </u>						When this pin is
5	NC	GND	20			given high level,
6	NC	GND	19			SPI is available.
7		NC	10	3	RX	Serial Data
<u>'</u>		NC	10			Receive
8	NC	GND	17	4	тх	Serial Data
9	SCL	NC	16			Transmit
			4.5	5,6,7,8,14,16,	NO	Net composited
10	SDO	GND	15	18	NC	Not connected
11	SDI	NC	14	9	SCL	SPI serial clock
12	+5V	GND	13	10	SDO	SPI data output
				11	SDI	SPI data input
	TOP			12	+5V	+5V supply
				13,15,17,19,	CND	Ground
				20,23,24	GND	Ground
				21,22	+3.3V	+3.3V supply

Note:

1.

Do not use 5V and 3.3V power supply simultaneously. To all pins on the module, 3.3V is high level and 0V is low level. 2.

Chapter 3. Electrical Characteristics

3.1 Operating Conditions of MS5561

TABLE 3-1 PARAMETERS

Parameter	Symbol	Conditions	Min	Max	Unit	Notes
Supply voltage	VDD	Ta = 25 °C	-0.3	4	V	-
Storage temperature	Ts	-	-40	+85	°C	1
Overpressure	Р	Ta = 25°C	-	10	bar	-

Note: Storage and operation in an environment of dry and non-corrosive gases.

3.2 Operating Conditions of Module

TABLE 3-2 PARAMETERS (TA = 25°C, V_{DD} = 3.0 V OR 5V)

Parameter	Symbol	Conditions	Min.	Тур	Max	Unit
Operating pressure range	р	-	10	-	1100	mbar abs.
Supply current, average ⁽¹⁾ during conversion ⁽²⁾ standby (no conversion)	l _{avg} I _{sc} I _{ss}	V _{DD} = 3.0 V	-	4 1	0.1	μA mA μA
Current consumption into MCLK ⁽³⁾		MCLK = 32.768 kHz	-	-	0.5	μA
Operating temperature range	Т		-40	+25	+85	°C
Conversion time	t _{conv}	MCLK = 32.768 kHz	-	-	35	ms
External clock signal ⁽⁴⁾	MCLK	-	30.000	32.768	35.000	kHz
Duty cycle of MCLK	-	-	40/60	50/50	60/40	%
Serial data clock	SCLK	-	-	-	500	kHz

Note:

- 1. Under the assumption of one conversion every second. Conversion means either a pressure or a temperature measurement started by a command to the serial interface of MS5561.
- 2. During conversion the sensor will be switched on and off in order to reduce power consumption; the total on time within a conversion is about 2 ms.
- 3. It can be reduced by switching off MCLK while MS5561 is in standby mode.
- 4. It is strongly recommended that a crystal oscillator be used because the device is sensitive to clock jitter. A square-wave form of the clock signal is a must.

3.3 Digital Inputs

TABLE 3-3 PARAMETERS (T = -40° C TO 85°C, V_{DD} = 3.3 V OR 5V)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input High Voltage	V _{IH}	-	2.64	-	3.3	V
Input Low Voltage	V _{IL}	-	0	-	0.66	V
Signal Rise Time	t _r	-	-	200	-	ns
Signal Fall Time	t _f	-	-	200	-	ns

3.4 Digital Outputs

TABLE 3-4 PARAMETERS (T = - 40°C TO 85°C, V_{DD} = 3.3V OR 5V)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output High Voltage	V _{OH}	I _{source} = 0.6 mA	2.64	-	3.3	V
Output Low Voltage	V _{OL}	I _{sink} = 0.6 mA	0	-	0.66	V
Signal Rise Time	t _r	-	-	200	-	ns
Signal Fall Time	t _f	-	-	200	-	ns

3.5 Pressure Output Characteristics

With the calibration data stored in the interface IC of the MS5561, the following characteristics can be achieved :(V_{DD} = 3.0 V unless noted otherwise)

Parameter	Conditions	Min	Тур	Max	Unit
Resolution ¹	p = 300 to 1000 mbar	to 1000 mbar		-	mbar
	Ta = 25°C				
Absolute Pressure	p = 750 to 1100 mbar	15		±1 5	mbar
Accuracy ²	Ta = 25°C	-1.5	-	+1.5	mbai
Relative Pressure	p = 750 to 1100 mbar	0.5		+0.5	mbor
Accuracy ³	Ta = 25°C	-0.5	-	+0.5	mpai
	T = 0 to +50°C	1		±1	mbar
Relative Pressure Error	p = 300 to 1000 mbar	- 1	-	T I	mbai
over Temperature ⁴	T = -40 to +85°C	C		+2	mbor
	p = 300 to 1000 mbar	-2	-	тэ	mpai
Long-term Stability ⁵	12 months	-	-1	-	mbar
Maximum Error over		1.6		+1.6	mbor
Supply Voltage	-	-1.0	-	τı.0	mpar

TABLE 3-5 PARAMETERS

Note:

- 1. A stable pressure reading of the given resolution requires taking the average of 2 to 4 subsequent pressure values due to noise of the ADC.
- 2. Maximum error of pressure reading over the pressure range.
- 3. Maximum error of pressure reading over the pressure range after offset adjustment at one pressure point.
- 4. With the second-order temperature compensation as described in Section "FUNCTION". See next section for typical operating curves.
- 5. The long-term stability is measured with non-soldered devices.

3.6 Temperature Output Characteristics

This temperature information is not required for most applications, but it is necessary to allow for temperature compensation of the pressure output.

TABLE 3-6 PARAMETERS

Parameter	Conditions	Min	Тур	Max	Unit
Resolution	-	0.005	0.01	0.015	°C
Accuracy ¹	T = 20°C	-0.8	-	0.8	°C
Accuracy	T = -40 to +85°C	-2	-	+3	°C
Maximum Error over Supply Voltage ²	V_{DD} = 2.2V to 3.6 V	-0.2	-	+0.2	°C

Note:

- 1. With the second-order temperature compensation as described in Section
 - "FUNCTION". See next section for typical operating curves.

2. At Ta = 25 °C

3.7 Typical Characteristics

FIGURE 3-1 ADC-VALUE D1 VS PRESSURE (TYPICAL)

FIGURE 3-2 ADC-VALUE D2 VS TEMPERATURE (TYPICAL)

FIGURE 3-3 ABSOLUTE PRESSURE ACCURACY

FIGURE 3-5 PRESSURE ERROR ACCURACY VS TEMPERATURE (TYPICAL)

FIGURE 3-6 PRESSURE ERROR VS SUPPLY VOLTAGE (TYPICAL)

FIGURE 3-7 TEMPERATURE ERROR VS SUPPLY VOLTAGE (TYPICAL)

Temperature error vs supply voltage (typical)

Chapter 4. SPI Interface

FIGURE 4-1 EXTERNAL MCU CONNECTION SCHEMATIC (ON-BOARD MCU USED)

External MCU

With:

M_SDO = Serial Data Out

M_SDI = Serial Data In

M_SCL = Serial Clock

32768HZ = Oscillator at 32.768 kHz for MS5561

SPISEL= External microcontroller selection

When SPISEL is given low level, on-board microcontroller is used to do operations to MS6651 (as shown in figure 4-1). When SPISEL is given high level, you can use an external microcontroller to do operations to MS6651 (as shown in figure 4-2). When an external microcontroller is used, the on-board MCU doesn't work. Following is the process.

Example: reading calibration words 2 and 4 on a MS5561

FIGURE 4-2 EXAMPLE: READING CALIBRATION WORDS 2 AND 4 ON A MS5561

The frame to be sent is **1-1-1-0-1-0-1-0-0-0-0** (for calibration word 2)

With SPI protocol, it is only possible to send 8 bits at a time (one byte). The frame must be divided by two and some "0" must be placed before and after the frame to complete the two bytes.

It becomes: 0-0-0-1-1-1-0-1-0-1-0-0-0-0-0

In Hexadecimal: 1Dh 60h

FIGURE 4-3 CALIBRATION FOR WORD 2

Note: The 0 added after the frame is placed to have one more clock after the stop bits on the SCLK line.

The other frames become:

Conversion start for pressure measurement (D1): 0Fh & 40h

Conversion start for temperature measurement (D2): 0Fh & 20h

Read calibration word 1 (W1): 1Dh & 50h

Read calibration word 2 (W2): 1Dh & 60h

Read calibration word 3 (W3): 1Dh & 90h

Read calibration word 4 (W4): 1Dh & A0h

Reset sequence command: 15h & 55h & 40h

With SPI protocol, two parameters need to be checked or adjusted during the configuration of microcontroller's SPI module:

- Clock Idle state must be low.

- Transmission must occur on rising edge of the serial clock when the microcontroller wants to send data received by the sensor. On the other side, when the microcontroller wants to receive data sent by the sensor transmission must occur on the falling edge of the clock.

FIGURE 4-4 TRANSMISSION

uController	Sensor	Sclk
Send	Receive	
Receive	Send	

FIGURE 4-5 FLOW CHART FOR PRESSURE AND TEMPERATURE READING AND SOFTWARE COMPENSATION

	Start Basic equations:	Example:
System initialisation	Read calibration data (factory calibrated) from PROM of MS5561 Word1, Word2, Word3 and Word4 (4x16 Bit)	Word1 = 46940 Word2 = 40217 Word3 = 25172 Word4 = 47212
	•	
	Convert calibration data into coefficients: (see bit pattern of Word1-Word4) C1: Pressure ensitivity C2: Pressure officient of pressure sensitivity C3: Temperature coefficient of pressure offset C4: Temperature coefficient of the temperature C6: Temperature coefficient of the temperature temperature C6: Temperature coefficient of the temperature	$\begin{array}{c} C1 = 23470 \\ C2 = 1324 \\ C3 = 737 \\ C4 = 393 \\ C5 = 628 \\ C6 = 25 \end{array}$
	•	1
measurement	Read digital pressure value from MS5561	D1 = 16460
ture	D2 (16 Bit)	D2 = 27856
ind tempera	Calculate calibration temperature UT1 = 8*C5+20224	UT1 = 25248
nre a	Calculate actual temperature	
Pressi	Difference between actual temperature and reference temperature: dT = D2 - UT 1 Actual temperature: $TEMP = 200 + dT^*(C6+50)/2^{10}$ (0.1°C resolution) $dT(D2) = D2 - T_{ref}$ $TEMP(D2) = 20°+dT(D2)^*TEMPSENS$	dT = 2608 TEMP = 391 = 39.1 ℃
	Calculate temperature compensated pressure Offset at actual temperature: OFF(D2) = OFFT1+TCO*dT(D2)	OFF - 5220
	$OFF = C2^{*}4 + ((C4-512)^{*}dT)/2^{12}$	SENS 40002
	Sensitivity at actual temperature: $SENS = C1 + (C3^*dT)/2^{10} + 24576$	3EN3 = 49923
	$X = (SENS * (D1-7168))/2^{t4} - OFF$ Temperature compensated pressure: $P = X^*10/2^6 + 250^*10 \qquad (0.1 \text{ mbar resolution}) \qquad P(D1,D2) = D1^*SENS(D2) - OFF(D2)$	X = 23093 P = 9716 = 971.6 mbar
	Display pressure and temperature value	

Note:

- 1. Readings of D2 can be done less frequently, but the display will be less stable in this case.
- 2. For a stable display of 0.1 mbar resolution, it is recommended to display the average of 8 subsequent pressure values.

FIGURE 4-6 ARRANGEMENT (BIT PATTERN) OF CALIBRATION DATA IN WORD1 TO WORD4

In order to obtain best accuracy over the whole temperature range, it is recommended to compensate for the non-linearity of the output of the temperature sensor. This can be achieved by correcting the calculated temperature and pressure by a second order correction factor. The second-order factors are calculated as follows:

FIGURE 4-7 FLOW CHART FOR CALCULATING THE TEMPERATURE AND PRESSURE TO THE OPTIMUM ACCURACY

Chapter 5. UART Interface

With:

M_SDO = Serial Data Out M_SDI = Serial Data In M_SCL = Serial Clock 32768HZ = Oscillator at 32.768 kHz for MS5561 SPISEL= External microcontroller selection RXD= Serial Data Receive TXD= Serial Data Transmit

When SPISEL is given low level, on-board microcontroller is used to do operations to MS6651 (as shown in figure 4-1). When SPISEL is given high level, you can use an external microcontroller to do operations to MS6651 (as shown in figure 4-2). When an external microcontroller is used, the on-board MCU doesn't work. Following are details of UART communication.

5.1 UART Configuration

Baud rate: 9600bps Start bit: 1bit Data bit: 8bits Parity bit: 0bit Stop bit: 1bit Note: UART level is COMS level. High level is 3.3V and low level 0V.

Serial Enabled Air Pressure Sensor Module

5.2 UART Command

TABLE 5-1 COMMAND SET

Command	Function
т	Output the current temperature value. Temperature in °C is displayed in
	the first line. Temperature in ${}^\circ\!\mathrm{F}$ is displayed in the second line.
Р	Output the current air pressure with the unit of Pa.
Н	Output the current height
T-C	Output temperature value in °C
T-F	Output temperature value in °F
TEST	Test mode. Serial port keeps on outputting temperature in °C and the
	current air pressure.

Note:

- All UART commands shall start with "\$sure" and followed by a space (0x20) and end with enter (0x0d, 0x0a).
- All UART commands shall be expressed in ASCII.
- All UART commands are not case-sensitive.
- Altitude is gotten when sea level is one standard air pressure. If sea level is not one standard air pressure, the altitude won't be accurate but only relative height will be obtained. For example, the altitude of location A is 50m and altitude of location B is 90m, B is relatively 40m higher than A. The tolerance is 10m.
- In Test mode, pressing any key can exit.

5.3 Examples

Current Temperature 1. \$sure t Temperature(C & F): 0016.8 Celsius 0062.2 Fahrenheit 2. Current Air Pressure \$sure p Air pressure:1010.9 mbar 3. Current Height \$sure h Height:00020 meters 4. Current Temperature in °C \$sure t-c Temperature(C):0018.3 Celsius 5. Current Temperature in °F \$sure t-f Temperature(F):0065.3 Fahrenheit Test Mode 6. \$sure test Enter auto sending mode, press any key to exit Air pressure:1011.1 mbar Temperature(C):0018.3 Celsius Air pressure:1011.1 mbar

Temperature(C):0018.3 Celsius Air pressure:1011.1 mbar Temperature(C):0018.3 Celsius Air pressure:1011.1 mbar Temperature(C):0018.3 Celsius k The auto sending mode has exited 7. Bad Command If commands entered are wrong, it will return Bad command! For example: \$sure kl bad command!

5.4 How to Use

- a. Power the module.
- b. Send commands to the module via the port. For example, send \$sure P to the module and then the current air pressure will be displayed on the computer.

FIGURE 5-2 OBTAIN THE CURRENT AIR PRESSURE

Chapter 6. Mechanical Drawing

FIGURE 6-1 MECHANICAL DRAWING

© 2004-2011 Sure Electronics Inc.

Chapter 7. Notes

Humidity and Water Protection

This module is designed for the integration into portable devices and sufficiently protected against humidity. A silicone gel for enhanced protection against humidity covers the membrane of the pressure transducer. The module must not be used for under water applications.

Light Sensitivity

The MS5561 is protected against sunlight by its metal cap. It is, however, important to note that the sensor may still be slightly sensitive to sunlight, especially to infrared light sources. This is due to the strong photo effect of silicon. As the effect is reversible there will be no damage, but the user has to take care that in the final product the sensor cannot be exposed to direct light during operation.

Chapter 8. Contact Us

Sure Electronics Co., Ltd.

East zone, 3F, Building 6 Jingang Technology Innovation Center No.108 Ganjiabian Rd (ZIP: 210000) Qixia District Nanjing P.R.China Tel: +86-25-68154800-860 Fax: +86-25-68154891-832 Website: www.sure-electronics.com Email: customerservice@sure-electronics.com