Features
* Core

— ARM® Cortex®-M3 revision 2.0 running at up to 84 MHz

— Memory Protection Unit (MPU)

— Thumb®-2 instruction set

— 24-bit SysTick Counter

— Nested Vector Interrupt Controller _®
* Memories

— From 256 to 512 Kbytes embedded Flash, 128-bit wide access, memory accelerator, dual bank

— From 32 to 100 Kbytes embedded SRAM with dual banks
— 16 Kbytes ROM with embedded bootloader routines (UART, USB) and IAP routines
— Static Memory Controller (SMC): SRAM, NOR, NAND support. NAND Flash ATglsAM

controller with 4-kbyte RAM buffer and ECC
. System ARM-based
— Embedded voltage regulator for single supply operation
— POR, BOD and Watchdog for safe reset FI aS h MCU

— Quartz or ceramic resonator oscillators: 3 to 20 MHz main and optional low power

32.768 kHz for RTC or device clock.
— High precision 8/12 MHz factory trimmed internal RC oscillator with 4 MHz Default

Frequency for fast device startup SAMBX

— Slow Clock Internal RC oscillator as permanent clock for device clock in low power

mode SAMBA

— One PLL for device clock and one dedicated PLL for USB 2.0 High Speed Mini
Host/Device 1
— Temperature Sensor Se”es
— Up to 17 peripheral DMA (PDC) channels and 6-channel central DMA plus
dedicated DMA for High-Speed USB Mini Host/Device and Ethernet MAC
* Low Power Modes
— Sleep and Backup modes, down to 2.5 pA in Backup mode.
— Backup domain: VDDBU pin, RTC, eight 32-bit backup registers
— Ultra Low-power RTC
* Peripherals
— USB 2.0 Device/Mini Host: 480 Mbps, 4-kbyte FIFO, up to 10 bidirectional
Endpoints, dedicated DMA
— Up to 4 USARTSs (1ISO7816, IrDA®, Flow Control, SPI, Manchester and LIN support)
and one UART
— 2 TWI (12C compatible), up to 6 SPIs, 1 SSC (I12S), 1 HSMCI (SDIO/SD/MMC) with up
to 2 slots
— 9-Channel 32-bit Timer/Counter (TC) for capture, compare and PWM mode,
Quadrature Decoder Logic and 2-bit Gray Up/Down Counter for Stepper Motor
— Up to 8-channel 16-bit PWM (PWMC) with Complementary Output, Fault Input, 12-
bit Dead Time Generator Counter for Motor Control
— 32-bit Real Time Timer (RTT) and RTC with calendar and alarm features
— 16-channel 12-bit 1Msps ADC with differential input mode and programmable gain
stage
— One 2-channel 12-bit 1 MSPS DAC
— One Ethernet MAC 10/100 (EMAC) with dedicated DMA
— Two CAN Controller with eight Mailboxes
— One True Random Number Generator (TRNG)
— Write Protected Registers
* /O
— Up to 103 I/O lines with external interrupt capability (edge or level sensitivity),
debouncing, glitch filtering and on-die Series Resistor Termination
— Up to Six 32-bit Parallel Input/Outputs (PIO)
* Packages
— 100-lead LQFP, 14 x 14 mm, pitch 0.5 mm
— 100-ball LFBGA, 9 x 9 mm, pitch 0.8 mm
— 144-lead LQFP, 20 x 20 mm, pitch 0.5 mm

— 144-ball LFBGA, 10 x 10 mm, pitch 0.8 mm
11057B-ATARM-28-May-12

ATMEL

ATMEL

1. SAM3X/A Description

11

2

Atmel's SAM3X/A series is a member of a family of Flash microcontrollers based on the high
performance 32-bit ARM Cortex-M3 RISC processor. It operates at a maximum speed of
84 MHz and features up to 512 Kbytes of Flash and up to 100 Kbytes of SRAM. The peripheral
set includes a High Speed USB Host and Device port with embedded transceiver, an Ethernet
MAC, 2x CANs, a High Speed MCI for SDIO/SD/MMC, an External Bus Interface with NAND
Flash controller, 5x UARTS, 2x TWIs, 4x SPIs, as well as 1 PWM timer, 9x general-purpose 32-
bit timers, an RTC, a 12-bit ADC and a 12-bit DAC.

The SAM3X/A series is ready for capacitive touch thanks to the QTouch library, offering an easy
way to implement buttons, wheels and sliders.

The SAM3X/A architecture is specifically designed to sustain high speed data transfers. It
includes a multi-layer bus matrix as well as multiple SRAM banks, PDC and DMA channels that
enable it to run tasks in parallel and maximize data throughput.

It operates from 1.62V to 3.6V and is available in 100- and 144-pin QFP and LFBGA packages.

The SAM3X/A devices are particularly well suited for networking applications: industrial and
home/building automation, gateways.

Configuration Summary

The SAM3X/A series devices differ in memory sizes, package and features list. Table 1-1 below
summarizes the configurations.

Table 1-1. Configuration Summary
Feature SAM3X8E SAM3X8C SAM3X4E SAM3X4C SAM3A8C SAM3A4C
Flash 2 x 256 Kbytes 2 x 256 Kbytes 2 x 128 Kbytes 2 x 128 Kbytes 2 x 256 Kbytes 2 x 128 Kbytes
SRAM 64 + 32 Kbytes 64 + 32 Kbytes 32 + 32 Kbytes 32 + 32 Kbytes 64 + 32 Kbytes 32 + 32 Kbytes
Nand Flash
Controller (NFC) Yes Yes
NFC SRAM® 4K bytes 4K bytes
package LQFP144 LQFP100 LQFP144 LQFP100 LQFP100 LQFP100
9 LFBGA144 LFBGA100 LFBGA144 LFBGA100 LFBGA100 LFBGA100
Number of P1Os 103 63 103 63 63 63
S';.DN Yes No Yes No No No
in
EMAC MII/RMII RMII MII/RMII RMII
External 16-bit data, 16-bit data,
Bus 8 chip selects, 8 chip selects,
Interface 23-bit address 23-bit address
SDRAM
Controller
Central DMA 6 4 6 4 4 4
12-bit ADC 16 ch.® 16 ch.® 16 ch.® 16 ch.® 16 ch.® 16 ch.®
12-bit DAC 2 ch. 2 ch. 2 ch. 2 ch. 2 ch. 2 ch.
32-bit Timer 94 9® 94 9® 94 9
PDC 17 15 17 15 15 15
Channels

S A M B X A ————

11057B-ATARM-28-May-12

. S A\ V3 X/A

Table 1-1. Configuration Summary (Continued)
Feature SAM3X8E SAM3X8C SAM3X4E SAM3X4C SAM3ASC SAM3A4C
USART/ © ©
UART 312 3/1 3/2 3/1 3/1 3/1
sPI® 14 +3 14 +3 14 +3 14 +3 14 +3 14 +3
1 slot 1 slot 1 slot 1 slot 1 slot 1 slot
HSMCI 8 bits 4 bits 8 bits 4 bits 4 bits 4 bits

Notes: 1. 4 Kbytes RAM buffer of the NAND Flash Controller (NFC) which can be used by the core if not
used by the NFC

2. One channel is reserved for internal temperature sensor

3. 2/8+ 4 =Number of SPI Controllers / Number of Chip Selects + Number of USART with SPI
Mode

4. 6 TC channels are accessible through PIO
5. 3 TC channels are accessible through PIO
6. USART3 in UART mode (RXD3 and TXD3 available)

Note: The SAM3X-EK evaluation kit for the SAM3X and SAM3A series is mounted with a SAM3X8H in
an LFBGA217 package. This device is not commercially available.

ATMEL ;

11057B-ATARM-28-May-12

ATMEL

2. SAMB3X/A Block Diagram

Figure 2-1.

SAM3A4/8C (100 pins) Block Diagram

O ¥
o &
&)

Q

R

N O O
QLG ¥

YV VY
System Controller Voltage
Regulator
TST —>
PCKO-PCK2 <€ Y
PLLA JTAG & Serial Wire
vPLL| M vivvt
XIN =31 5c In-Circuit Emulator
XOUT <€— -
WDT Cortex-M3 P 24-Bit N
ortex- rocessor | sysTic Counter | vV
RC Fmax 84 MHz th | Flash SRAMO SRAM1
12/8/4 M ¢ | |2x256 KBytes| 64 KBytes| [32 KBytes| ROM
2x128 KBytes| [32 KBytes| |32 KBytes| [L6 KBytes]
Fwup SUPC MPU 2x64 KBytes| |16 KBytes| |16 KBytes|
XIN32 IID ls 1 1 I
XOUT32 <€ OSC 32k l
ERASE <> D—} RC 32K
8
GPBREG -
RTT =g >
Low Power| |Peripheral usB E“z’ >
RTC | | jmd Peripheral DMA DMAJFIFO| Mini Host |5 G >
Brid Controller Device HSf &I [<—>
VDDBU POR idge ntro I':I::: P
VDDCORE — B B
VDDUTMI —— RSTC —~
NRST <€ >
PIoA || pios |
PIOC
TRNG <> 4-Channel
DMA
V) DMA
TWCKO <B o >
TWDO > |« > Twio PDC g
TWCKL ¢ > > >
TWD1 ¢ > > Twi [pOCl™ ~
URXD > >
UTXD - »| [«——] UART PDC >
-« > > DMA
TXDO ¢ > [—>
SCKO ¢ [«—— | USARTO
RTSO - - >
CTSO - > —— PDC|™
RXD1 ¢ > .
TXDL > [e—] DMA
SCK1 - »| |«——>| USART1 <>
RTSL <
CTS1 - PDC
RXD2 ¢ -
TXD2 < >
SCK2 - >| USART2
RTS2 >
CTs2 = > = PDC
CANRX0 > - <«
CANTX0 > CANO -
CANRX1 > > -—
CANTX1 ¢ CANL bl
TCLK[0:2] <= > »| Timer Counter A -
High Performance
TIOA[0:2] < > - Peripheral
TIOB[0:2] ¢ < >| TCl0-2] Br?d e N\
9 DMA[DMA] -« <l pE e
TCLK[3:5] <—— »| Timer Counter B I splo <} bl
TIOA[3:5] ¢ <]] [«
TIOB[3:5] <& > |« || < > [«
Timer Counter C
[DMAT DMA] -« < i
PWMH[0:3] > | DMA < <l bl B
PWML[0:7] ¢ T = PWM <> <> < > >
PWMFI[0:1] > oC ssc < <
Temp. < g
ADTRG ¢ > > ISLSPO'] | DMA| DMA)
AD[0..14] +—1}>| ——» ADC hilg
— PDC
ADVREF > HSMCI < o el
DACO <—t» > < >| [
DAC1 <—f—> DAC <> > [l Dl i
DATRG <—> PDC [~ T T

SAM3X/A

VBUS
DFSDM
DFSDP
DHSDM
DHSDP
UOTGVBOF
UOTGID

SPI0_NPCS0O
SPI0O_NPCS1
SPI0O_NPCS2
SPIO_NPCS3
MISO0
MOSI0
SPCKO

MCCK
MCCDA
MCDA[0..3]

11057B-ATARM-28-May-12

SAM3X/A

Figure 2-2. SAM3X4/8C (100 pins) Block Diagram

R
QO N & g\
° é§®$ & s & oioé
QS XF & & & o
‘ V4l
4
System Controller Voltage
TST —] ¢ Regulator
PCKO-PCK2 <> Y
PLLA JTAG & Serial Wire |
UPLL | PMC * * * * *
XIN —3[" osc
In-circuit Emulator
xouT < 21 : 24-Bit N
WDT i
rtex-M3 Pr r | SysTick Counter|
=—]| sv Cortex-M3 Processor | 9 N FLasH | [sramo |[SRAML
Fmax 84MHz I ROM
12/8/4 M| c 2x256 KBytes| |64 KBytes| |32 KBytes
2x128 KBytes| |32 KBytes| |32 KBytes| [16 KBytes
FWUP | supc MPU 2x64 KBytes| | 16 KBytes| | 16 KBytes|
XIN32 > ll/D ls 1 1 I
XOUT32 <€ OSC 32K
ERASE <> D—> RC 32k
8
PERE »> VBUS
ey
" usB =
RTT Low Powel Peripheral pMA|FiEd| Mini Hosy 58 » DHSDM
RTC ™= peripheral DMA Device HS ‘Qéf > < < Bg?gssop
VDDBU POR Bridge Controller] |< » UOTGID
VDDCORE —}] B l—| |« Eererck
VDDUTMI RSTC : -« » ETXEN
— ECRSDV
P FIFO [Ethernet | > ERXER
NRST <€ > DMA l128-Byte TX| MAC : » ERX0-ERX1
ETX0-ETX1
PioA | [pioB | o8-8y x| "M [- o
> >
PIOC = EMDIO
TRNG <> 4-Channel
DMA
TWCKO =f< > Twio
TWDO <—1} > f«— » PDC
TWCK1 >
TWDL - > > Twii [PDC
URXD > >
UTXD - > [——| UART BDC
RXDO > >
TXDO ¢ >| [¢—>
SCKO ¢ e
RTSO < USARTO >
CTSO - > > PDC
RXDL > >
TXD1 > [e—] PN
SCK1 - > |[¢<—»| USARTL —
RTSL - fe——]
CTS1 = PDC
RXD2 - .
TXD2 - >
SCK2 - »| USART2
RTS2 >
CTS2 - > - PDC
CANRXO & - - >
CANTXO ¢ > CANO g
CANRX1 > > >
CANTX1 ¢ CANL g
TLK[0:2] <% = >
_ Timer Counter A P High Performance
;‘Ig’;[g-_il - <D > TC[0..2] -~ Peripherals N
10:2] Bridge DVA - »| <4 spio_nPcso
»| |<«1—> SPIOCCNPCS1
I > SPI0_NPCS2
»| [« sPio_NPCS3
Timer Counter B SPIO - > < > MISO0
<> - »| |« wmosio
le—> < <——> SPCKO
Timer Counter C
DMA -] > TF
PWMH[0:3] & > | DMA < <l Dl B
PWML[0:3] ¢ < PWM] PN . —— o i
PWMFI[0:1] - > < > EE
< > RF
ADTRG ¢ > > DMA
AD[0..14] +——>»| |—> ADC [~
ADVREF — > - . » MCCK
DACO <] » > HSMCI i > > MCCDA
DACL <—}» DAC < 4 > MCDA[.3]
DATRG —1—» PDC ™ .

ATMEL ;

11057B-ATARM-28-May-12

Figure 2-3. SAMB3X4/8E (144 pins) Block Diagram

Sl
> & N
NS %\§®6 & s & FF
QL ¥ & 9 e
W ¢ T ¢
Y
System Controller R\églltflla%ir
TST —> ¢
PCKO-PCK2 <€ Y
BLLA JTAG & Serial Wire |
UPLL PMC * T * * T
XIN —>] -
oSsc In-circuit Emulator
XOUT < 2481 N
WDT | Cortex-M3 Processor [SysTick Counter| v/
=C SM | FLASH SsrRAMO || sRAML
Fmax 84MHz |
12/8/4 M| ¢ | | 2x256 KBytes| |64 KBytes| [32 KBytes ROM
‘ 2x128 KBytes| [32 KBytes | |32 KBytes |[L6 KByteg]
SHDN
WU <« 5| supc MPU 2x64 KBytes| |16 KBytes| |16 KBytes
XIN32 > " lI/D ls I I I
XOUT32 <€ 0Sc 32
ERASE (—)D—) RC 32K
8
GPBREG » VBUS
RTT s > DFESDM
NRSTE > Low Power| [Peripheral USBOTG|= 2|+ > o
RTC ™= Peripheral DMA DMA [FIFO| Device 2 > — > DHSDP
VDDBU POR Bridge Controller HS Sl : < ;88¥8}/DBOF
VDDCORE —}] B —| |«{—> ETXCK-ERXCK-EREFCK
RSTC —>| |« ETXER-ETXDV
vDDUTMI | FIFO |ethemnet] €| |*f— Ecrs-EcoL Ecrsov
_ DMA CMEl—| |t ERXER-ERXDV
NRST <€ > [128-Byte TX| MAC S <> ERX0-ERX3
- MII/RMI| <> ETX0-ETX3
PIOA PIOB 128-Byte RX| —_ > Evpe
Dd > EMDIO
pioc |[Piop | 1> Fioo
PIOE
TRNG <> 6-Channel
DMA
TWCKO ~f< Twio DMA
W00 <« > |—» PDC EBI —
TWCKL = <« - > > D[15:0]
TWI1 <> B N
TWD1 < > > PDC - - > » AO/NBSO
8-bit/16-bit > A
URXD - > UART <« > » A21/NANDALE
UTXD > [+—— [PDC NAND Flash > » A22/NANDCLE
RXDO >| > DMA - >
TXDO ¢ D - > AL7
SCKO > [e—> - » NCSO
RTSO <——> USARTO P > > NCSL
CTSO - > ——> PDC > » NCS2
RXD1 ¢ > DMA > < “%3
P < le—»] - > NWRONWE
SCK1 ¢ > < > >
RTS1 <¢ USART1 55C Static Memory > > NWR1
CTS1 < > >
RXD2 - > Controller
TXD2 < PN
SCK2 ¢ > USART2 ™
RTS2 < < [E— 55C ECC
crs2 < g Controller
RXDS < > > USART3 -~
TXDS < PDC » NANDRDY
- > NANDOE
o > > NANDWE
CANRXO ¢ > -— - <> NWAIT
CANTX0 > CANO hild 4Ko FIFO
CANRX1 ¢ > >l
CANTX1 > CANL N
TCLK[0:2] < > »| Timer Counter A 3
o High Performance
TIOA[O:vZ] - < > Tclo.2) g Peripherals .,
TIOB[0:2] > Bridge DVA < »| |<«1—> sPio_NPCsO
> » SPIO_NPCS1
I » |« spPio_NPCS2
i »| |« spPio_NPCS3
Timer Counter B SPIO - <l et
< < » MOSIO
fa—>| - » |1 spcko
TCLKIEE] Timer Counter C
TIOA[6:8] & 47—1 <«
TIOB[6:8] < »| TCIs-8]
DMA <> |« > TF
- <l bE LS
PWMH[0:6] ¢ > |- DMA il e
PWMLI0:7] <—f— > Pwm < g ssc > =
PWMFI[0:2] ¢ PDC < <> Rk
- <> RrF
Temp.
ADTRG > >| ADC P DMA)
AD[0..14] <4—1—>| >
ADVREF — > BDC HSMCI < > » MCCK
DACO <—+—» « < » MCCDA
DACL <—— DAC -« > > MCDA[..7]
DATRG <—f» PDC

6 SAM3X/A

11057B-ATARM-28-May-12

SAM3X/A

Figure 2-4. SAM3X8H (217 pins) Block Diagram (not commercially available).

N
> & \g
o) @"iﬁ 0(;0 & ooo ovevové
QXL S & & o
A A A4 * * L ‘L
YYVY
System Controller Voltage
Regulator
TST —>f ¢
PCKO-PCK2 (—)]{— Y
PLLA JTAG & Serial Wire |
UPLL | PMC * f * * f
XIN —» P—
0sc In-Circuit Emulator
xouT < 24-Bit N
Cortex-M3 Processor | SysTick Counter| \/
Fmax 84MHz X FLASH SRAMO || SRAM1
¢ | |2x256 KBytes [64 KBytes ROM

SHDN <€ 2x128 KBytes | |32 KBytes 6 KByteq

< MPU

FWUP I; SUPC 2x64 KBytes | |16 KBytes
XIN32 I3 lIID ls I

XOUT32 <€ OSC 32K
ERASE <> D—) RC 32k
8 VBUS
GPBREG _.p » DFSDM
NRSTB RTT use |2 DFSDP
Low Power| |Peripheral omAlriFo| wini Hosy |2 & > DHsoM
RTC ™= Peripheral DMA Device HS |~ & [¢ - [TJ<]—» UOTGVBOF
VDDBU POR Bridge Controller — | | UOTGID
VDDCORE —] | B l—| |« ETXCK-ERXC
RSTC —>| |« ETXEN-ETXER
VDDUTMI —— FIFO — ECRS-ECOL, ECRSDV
< > Ethernetfé—| |« ERXER-ERXDV
NRST <€ > DMA |128-Byte TX| MAC S| s o
PIOA PIOB 128-Byte RX| MII/RMII = : : E:ﬂ)(DOC—ETXS
: [>| [« EmpiO
pioc || PloD o J< > B
PIOE I PIOF I
6-Channel
DMA

TWCKO V) > Twio DMA
TWDO <} > | » |PDCI™ EBI —

TWCK1 ¢ > | > <> - > D[15:0]
WDl <—f—>] | > Twil [PDC 8-bit/16-bit - > AUNBSO
DRXD > > » A21/NANDALE
DTXD - UART 1PDC NAND Flash > » A22/NANDCLE
RXDO ¢ > DMA = > AL6/BAO
TXDO > = » AL7/BAL
SCKO ¢ > > - » NCSO
RTSO ¢ - USARTO > NCS1
CTS0 > PDC|™ CSDfeAl:\/I nest
RXD1 <——> > DMA ontrofler < NCS3
TXD1 > > - » NRD
SCK1 - »| USART1 <> ! |« NWRONWE
E'{gi e Static Memory > » NWR1/NBS1

< »> »> | |« SDCKE
RXD2 ¢ > > Controller RAS
IXD2 = <l D > - > CAS
ke 3 > |« >| USART2 > oo > > SDWE
> > SDCS
SV e > oo Controller > > NCsa
> NCS5
TXD3 o NCS6
SCK3 USART3 > | |e NGa7
e I PDC > [T NANDOE

CANRXO > > NANDWE

< > > <« - <1—> NWAIT

CANTX0 ¢ 1= CANO - 4Ko FIFO

CANRX1 ¢ = <«

CANTX1 ¢ > |« CAN1 <> \J > SDCK

TCLK[0:2] & > > Ti -
Timer Counter A High Performance
TIOA[0:2] < > |« > T1C[0..2] Peripherals
TIOB[0:2] > | > - : Ny
0:2] Bridge < »| 1«1 sPio_nPCSO
»| |« SsPIO_NPCSL
TCLK[3:5] I »| |« SPIO_NPCS2
& > > i »| | » SPIO_NPCS3
Timer Counter B SPIO < > 1< > MISO0
TIOA[3:5] < < > <> < » MOSI0
TIOB[3:5] < < >| TCI3-3] »> > »| |«t+—> sPcko
DMA < <——> SPI1_NPCS0
SPI1_NPCS1
: >~ > |<1—> sPiLNPCS2
TCLKIEE]) - Timer Counter C > SPIL < > SlFl’élGNPCSS
TIOA[6:8] > Tcl6..8] < MOSIL
TIOB[6:8] < > < » |<4— spck1
DMA| < > TF
PWMHI[0:7] & > |« DMA > 1K
PWML[0:7] > |« > PWM <> < ssc - > < > TD
PWMFI[0:2] ¢ > > 5OC D Nl Dl e 22
Temp. < > | > RF
ADTRG =13 >| Apc <~ DMA < »| |« wcDB.3)
AD[0..14] 3 o f== wccos
ADVREF — > £D HSMCI < > » MCCK
DACO < > MCCDA
DAC1 = > DAC <> < > » MCDA[0..7]
DATRG > PDC

11057B-ATARM-28-May-12

ATMEL

3. Signal Description

Table 3-1 gives details on the signal names classified by peripheral.

Table 3-1. Signal Description List
Active Voltage
Signal Name Function Type Level Reference | Comments
Power Supplies
VDDIO Peripherals 1/0 Lines Power Supply Power 1.62V to 3.6V
VDDUTMI USB UTMI+ Interface Power Supply Power 3.0Vto 3.6V
VDDOUT Voltage Regulator Output Power
Voltage Regulator, ADC and DAC Power
VDDIN Power
Supply
GNDUTMI USB UTMI+ Interface Ground Ground
VDDBU Backup I/O Lines Power Supply Power 1.62V to 3.6V
GNDBU Backup Ground Ground
VDDPLL PLL A, UPLL and Oscillator Power Supply Power 1.62 Vto 1.95V
GNDPLL PLL A, UPLL and Oscillator Ground Ground
VDDANA ADC and DAC Analog Power Supply Power 2.0V to 3.6V
GNDANA ADC and DAC Analog Ground Ground
VDDCORE Core Chip Power Supply Power 1.62V to 1.95V
GND Ground Ground
Clocks, Oscillators and PLLs
XIN Main Oscillator Input Input
VDDPLL
XOUT Main Oscillator Output Output
XIN32 Slow Clock Oscillator Input Input
- VDDBU
XOUT32 Slow Clock Oscillator Output Output
VBG Bias Voltage Reference Analog
PCKO - PCK2 Programmable Clock Output Output
Shutdown, Wakeup Logic
0: The device is in
backup mode
SHDN Shut-Down Control Output VDDBU 1: The device is
running (not in
backup mode)
FWUP Force Wake-up Input Input VDDBU EISEdS external Pull-
8 S A IS X/ /A 000000000 —

11057B-ATARM-28-May-12

. S A\ V3 X/A

Table 3-1. Signal Description List (Continued)

Active Voltage

Signal Name Function Type Level Reference | Comments

ICE and JTAG
TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input Reset State:
TDO/TRACESWO geus;t Data Out / Trace Asynchronous Data Output vDDIO | ﬁ]\gfnzrpmriz

i 1)

TMS/SWDIO E;:yglizje'em Serial Wire Input / 1/0 fisabled
JTAGSEL JTAG Selection Input High VDDBU Eﬁﬁgi”wim Internal

Flash Memory
ERASE Elgrz%z:% NVM Configuration Bits Erase Input High VDDIO Pull-down resistor

Reset/Test
NRST Microcontroller Reset 110 Low VDDIO Pull-up resistor
NRSTB Asynchronous Microcontroller Reset Input Low vDDBU Pull-up resistor
TST Test Mode Select Input VDDBU Pull-down resistor
Universal Asynchronous Receiver Transceiver - UART

URXD UART Receive Data Input
UTXD UART Transmit Data Output

ATMEL ;

11057B-ATARM-28-May-12

ATMEL

Table 3-1. Signal Description List (Continued)

Active Voltage
Signal Name Function Type Level Reference | Comments
PIO Controller - PIOA - PIOB - PIOC - PIOD - PIOE
+Schmitt Trigger®
Reset State:

PAO - PA31 Parallel 10 Controller A 110 P10 Input
eInternal pull-up
enabled
+Schmitt Trigger®
Reset State:

PBO - PB31 Parallel 10 Controller B 110 P10 Input
eInternal pull-up
enabled
+Schmitt Trigger®
Reset State:

PCO - PC30 Parallel 10 Controller C 110 P10 Input
eInternal pull-up
enabled

VDDIO ——
+Schmitt Trigger®
Reset State:

PDO - PD30 Parallel 10 Controller D 110 P10 Input
eInternal pull-up
enabled
+Schmitt Trigger(”
Reset State:

PEO - PE31 Parallel 10 Controller E 110 P10 Input
eInternal pull-up
enabled
+Schmitt Trigger(”
Reset State:

PFO - PF6 Parallel 10 Controller F I/0 P10 Input
eInternal pull-up
enabled

External Memory Bus

DO - D15 Data Bus 1o} Pulled-up input at
reset

AO - A23 Address Bus Output 0 at reset

Static Memory Controller - SMC

NCSO0 - NCS7 Chip Select Lines Output Low

NWRO - NWR1 Write Signal Output Low

NRD Read Signal Output Low

NWE Write Enable Output Low

NBSO - NBS1 Byte Mask Signal Output Low

NWAIT External Wait Signal Input Low

10 S A M B X A ———— e —

11057B-ATARM-28-May-12

. S A\ V3 X/A

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level Reference | Comments
NAND Flash Controller-NFC
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
NANDRDY NAND Ready Input
NANDCLE NAND Flash Command Line Enable Output Low
NANDALE NAND Flash Address Line Enable Output Low
SDRAM Controller - SDRAM

SDCK SDRAM Clock Output Tied low after reset
SDCKE SDRAM Clock Enable Output High
SDCS SDRAM Controller Chip Select Line Output Low
BA[1:0] Bank Select Output
SDWE SDRAM Write Enable Output Low
RAS - CAS Row and Column Signal Output Low
NBS[1:0] Byte Mask Signals Output Low
SDA10 SDRAM Address 10 Line Output

High Speed Multimedia Card Interface HSMCI
MCCK Multimedia Card Clock I/0
MCCDA Multimedia Card Slot A Command 110
MCDAO - MCDAY Multimedia Card Slot A Data I/0
MCCDB Multimedia Card Slot B Command I/0
MCDBO - MCDB3 Multimedia Card Slot A Data I}

Universal Synchronous Asynchronous Receiver Transmitter USARTX

SCKx USARTX Serial Clock I/0
TXDx USARTX Transmit Data I/0
RXDx USARTX Receive Data Input
RTSx USARTxX Request To Send Output
CTSx USARTX Clear To Send Input
Ethernet MAC 10/100 - EMAC

EREFCK Reference Clock Input RMII only
ETXCK Transmit Clock Input Mil only
ERXCK Receive Clock Input MIl only
ETXEN Transmit Enable Output

ETXO -
ETXO0 - ETX3 Transmit Data Output ETX1 only

in RMII
ETXER Transmit Coding Error Output MiIl only
ERXDV Receive Data Valid Input Mil only

11057B-ATARM-28-May-12

ATMEL

11

ATMEL

Table 3-1. Signal Description List (Continued)

Active Voltage
Signal Name Function Type Level Reference | Comments
ECRSDV Carrier Sense and Data Valid Input RMII only
ERXO -
ERXO - ERX3 Receive Data Input ERX1 only
in RMII
ERXER Receive Error Input
ECRS Carrier Sense Input Mil only
ECOL Collision Detected Input Mil only
EMDC Management Data Clock Output
EMDIO Management Data Input/Output I/O
CAN Controller - CANx
CANRXx CAN Input Input
CANTXx CAN Output Output
Synchronous Serial Controller - SSC
TD SSC Transmit Data Output
RD SSC Receive Data Input
TK SSC Transmit Clock I/0
RK SSC Receive Clock I/0
TF SSC Transmit Frame Sync I/0
RF SSC Receive Frame Sync I/0
Timer/Counter - TC
TCLKXx TC Channel x External Clock Input Input
TIOAX TC Channel x I/O Line A /0
TIOBX TC Channel x I/O Line B I/O
Pulse Width Modulation Controller- PWMC
PWMHXx PWM Waveform Output High for channel x Output
only output in
- P vttt Low o
time insertion is
enabled
PWMFIX PWM Fault Input for channel x Input
Serial Peripheral Interface - SPIx
MISOx Master In Slave Out I/0
MOSIx Master Out Slave In I/0
SPCKXx SPI Serial Clock I/0
SPIx_NPCS0 SPI Peripheral Chip Select 0 I/O Low
gﬁ:izmﬁggé i SPI Peripheral Chip Select Output Low
Two-Wire Interface- TWIX
TWDx | TWix Two-wire Serial Data o
12 SAMIX/ A ————————

11057B-ATARM-28-May-12

. S A\ V3 X/A

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level Reference | Comments
TWCKX TWIx Two-wire Serial Clock 110
Analog-to-Digital Converter - ADC
ADO - AD14 Analog Inputs Analog
ADTRG ADC Trigger Input
ADVREF ADC and DAC Reference Analog
Digital-to-Analog Converter - DACC
DACO DAC channel 0 analog output Analog
DAC1 DAC channel 1 analog output Analog
DATRG DAC Trigger
Fast Flash Programming Interface
PGMENO-PGMEN2 Programming Enabling Input VDDIO
PGMMO-PGMM3 Programming Mode Input VDDIO
PGMDO0O-PGMD15 Programming Data I/0 VDDIO
PGMRDY Programming Ready Output High VDDIO
PGMNVALID Data Direction Output Low VDDIO
PGMNOE Programming Read Input Low VDDIO
PGMCK Programming Clock Input VDDIO
PGMNCMD Programming Command Input Low VDDIO
USB High Speed Device
VBUS uUSB Bus.Power Measurement Mini Analog
Host/Device
DFSDM USB Full Speed Data - Analog VDDUTMI
DFSDP USB Full Speed Data + Analog VDDUTMI
DHSDM USB High Speed Data - Analog VDDUTMI
DHSDP USB High Speed Data + Analog VDDUTMI
UOTGVBOE gosrlf VBus On/Off: Bus Power Control VDDIO
UOTGID usB _Ic_:len_tification: Mini Connector VDDIO
Identification Port
Notes: 1. TDO pinis set in input mode when the Cortex-M3 Core is not in debug mode. Thus the internal pull-up corresponding to this

PIO line must be enabled to avoid current consumption due to floating input.

No oM

11057B-ATARM-28-May-12

PIOA: Schmitt Trigger on all, except PAO, PA9, PA26, PA29, PA30, PA31
PIOB: Schmitt Trigger on all, except PB14 and PB22
PIOC: Schmitt Trigger on all, except PC2 to PC9, PC15 to PC24
PIOD: Schmitt Trigger on all, except PD10 to PD30
PIOE: Schmitt Trigger on all, except PEO to PE4, PE15, PE17, PE19, PE21, PE23, PE25, PE29
PIOF: Schmitt Trigger on all PIOs

ATMEL

13

ATMEL

3.1 Design Considerations

In order to facilitate schematic capture when using a SAM3X/A design, Atmel provides a “Sche-
matics Checklist” Application Note. See http://www.atmel.com/products/AT91/

14 S A M B X A ————

. S A\ V3 X/A

4. Package and Pinout

41 SAM3A4/8C and SAM3X4/8C Package and Pinout

The SAM3A4/8C and SAM3X4/8C are available in 100-lead LQFP and 100-ball LFBGA

packages.
41.1 100-lead LQFP Package Outline

Figure 4-1. Orientation of the 100-lead LQFP Package

75 51
0 0
76 9 b 50
1009 - P 26
[) [)
1 25

41.2 100-ball LFBGA Package Outline

Figure 4-2. Orientation of the 100-ball LFBGA Package
TOP VIEW

[EnY

FEN WA ~N®O O
O 0O 0O 0O oo oo o o
O O O 0O 0O 0 0 0o 0o o
O 0O 0O 0 O 0o o o o o
O 0O 0O 0O 0O o 0O 0o o o
O 0O 0o 0O 0O o 0O 0O 0o o
O 0 0o 0O 0O 0O 0O 0 0 ©o
O 0O 0o O O o 0O 0o 0o o
O 0 0 0O 0 0O 0O 0 0 o

o 0o o 0O 0o 0o 00 0O

O 00 00O OO0 0 O

>
w
@)
O
m
M
®
I

BALL A1

ATMEL

11057B-ATARM-28-May-12

o
A

15

ATMEL

4.1.3 100-lead LQFP Pinout

Table 4-1. 100-lead LQFP SAM3A4/8C and SAM3X4/8C Pinout

1 PB26 26 DHSDP 51 VDDANA 76 PA26
2 PA9 27 DHSDM 52 GNDANA 77 PA27
3 PA10 28 VBUS 53 ADVREF 78 PA28
4 PA11 29 VBG 54 PB15 79 PA29
5 PA12 30 VDDUTMI 55 PB16 80 PBO
6 PA13 31 DFSDP 56 PA16 81 PB1
7 PA14 32 DFSDM 57 PA24 82 PB2
8 PA15 33 GNDUTMI 58 PA23 83 PB3
9 PA17 34 VDDCORE 59 PA22 84 PB4
10 VDDCORE 35 JTAGSEL 60 PAG 85 PB5
11 VvDDIO 36 XIN32 61 PA4 86 PB6
12 GND 37 XOUT32 62 PA3 87 PB7
13 PAO 38 TST 63 PA2 88 PB8
14 PA1 39 VDDBU 64 PB12 89 VDDCORE
15 PAS5 40 FWUP 65 PB13 90 VDDIO
16 PA7 41 GND 66 PB17 91 GND
17 PA8 42 VDDOUT 67 PB18 92 PB9
18 PB28 43 VDDIN 68 PB19 93 PB10
19 PB29 44 GND 69 PB20 94 PB11
20 PB30 45 VDDCORE 70 PB21 95 PCO
21 PB31 46 PB27 71 VDDCORE 96 PB14
22 GNDPLL 47 NRST 72 VDDIO 97 PB22
23 VDDPLL 48 PA18 73 GND 98 PB23
24 XOUT 49 PA19 74 PA21 99 PB24
25 XIN 50 PA20 75 PA25 100 PB25
16 S A M B X A ————

11057B-ATARM-28-May-12

. S A\ V3 X/A

4.1.4 100-ball LFBGA Pinout

Table 4-2. 100-ball LFBGA SAM3X4/8E Package and Pinout
Al PB26 C6 PB11 F1 VDDPLL H6 NRST
A2 PB24 Cc7 PB8 F2 GNDPLL H7 PA19
A3 PB22 C8 PB4 F3 PB30 H8 PA4
A4 PB14 C9 PBO F4 PB29 H9 PAG
A5 PCO C10 PA25 F5 GND H10 PA22
A6 PB9 D1 PA5 F6 GND J1 VBUS
A7 PB6 D2 PAO F7 VDDIO J2 DHSDP
A8 PB2 D3 PA1 F8 PB13 J3 DHSDM
A9 PA28 D4 VDDCORE F9 PB17 J4 JTAGSEL
Al10 PA26 D5 VDDIO F10 PB18 J5 XIN32
Bl PA11 D6 VDDCORE Gl XOouT J6 VDDIN
B2 PB25 D7 VDDCORE G2 VDDUTMI J7 PA23
B3 PB23 D8 PB5 G3 PB31 J8 PA24
B4 PA10 D9 PB1 G4 GNDBU Jo PB16
B5 PA9 D10 PA21 G5 PB27 J10 PA16
B6 PB10 El PB28 G6 PA18 K1 VBG
B7 PB7 E2 PA7 G7 PA20 K2 DFSDP
B8 PB3 E3 PA8 G8 PA3 K3 DFSDM
B9 PA29 E4 VDDCORE G9 PA2 K4 VDDCORE
B10 PA27 E5 GND G10 PB12 K5 XOUT32
C1 PA12 E6 GND H1 XIN K6 VDDOUT
Cc2 PA14 E7 VDDIO H2 GNDUTMI K7 VDDANA
C3 PA13 ES PB19 H3 TST K8 GNDANA
Cc4 PA17 E9 PB20 H4 VDDBU K9 ADVREF
C5 PA15 E10 PB21 H5 WAKEUP K10 PB15

11057B-ATARM-28-May-12

ATMEL

17

ATMEL

4.2 SAM3X4/8E Package and Pinout
The SAM3X4/8E is available in 144-lead LQFP and 144-ball LFBGA packages.

421 144-lead LQFP Package Outline

Figure 4-3. Orientation of the 144-lead LQFP Package

108 73
] [
1094 b 72
144 R 37
] U
1 36

4.2.2 144-ball LFBGA Package Outline

The 144-Ball LFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its dimen-
sions are 10 x 10 x 1.4 mm.

Figure 4-4. Orientation of the 144-ball LFBGA Package

TOP VIEW
12 Q00000000000
11 Q00000000000
10 Q00000000000
9 Q00000000000
8 Q00000000000
7 Q00000000000
6 Q00000000000
5 Q00000000000
4 Q00000000000
3 Q00000000000
2 Q00000000000
10000000000000

ABCDEFGHJ KL M
BALLA1 /

18 S A M B X A ————

. S A\ V3 X/A

4.2.3 144-lead LQFP Pinout

Table 4-3. 144-lead LQFP SAM3X4/8E Pinout

1 PB26 37 DHSDP 73 VDDANA 109 PA26
2 PA9 38 DHSDM 74 GNDANA 110 PA27
3 PA10 39 VBUS 75 ADVREF 111 PA28
4 PA11 40 VBG 76 PB15 112 PA29
5 PA12 41 VDDUTMI 77 PB16 113 PBO
6 PA13 42 DFSDP 78 PA16 114 PB1
7 PA14 43 DFSDM 79 PA24 115 PB2
8 PA15 44 GNDUTMI 80 PA23 116 PC4
9 PA17 45 VDDCORE 81 PA22 117 PC10
10 VDDCORE 46 JTAGSEL 82 PAG 118 PB3
11 VDDIO 47 NRSTB 83 PA4 119 PB4
12 GND 48 XIN32 84 PA3 120 PBS
13 PDO 49 XOUT32 85 PA2 121 PB6
14 PD1 50 SHDN 86 PB12 122 PB7
15 PD2 51 TST 87 PB13 123 PB8
16 PD3 52 VDDBU 88 PB17 124 VDDCORE
17 PD4 53 FWUP 89 PB18 125 VDDIO
18 PD5 54 GNDBU 90 PB19 126 GND
19 PD6 55 PC1 91 PB20 127 PB9
20 PD7 56 VDDOUT 92 PB21 128 PB10
21 PD8 57 VDDIN 93 PC11 129 PB11
22 PD9 58 GND 94 PC12 130 PCO
23 PAO 59 PC2 95 PC13 131 PC20
24 PA1 60 PC3 96 PC14 132 PC21
25 PAS 61 VDDCORE 97 PC15 133 PC22
26 PA7 62 VDDIO 98 PC16 134 PC23
27 PA8 63 PC5 99 PC17 135 PC24
28 PB28 64 PC6 100 PC18 136 PC25
29 PB29 65 PC7 101 PC19 137 PC26
30 PB30 66 PC8 102 PC29 138 PC27
31 PB31 67 PC9 103 PC30 139 PC28
32 PD10 68 PB27 104 VDDCORE 140 PB14
33 GNDPLL 69 NRST 105 VDDIO 141 PB22
34 VDDPLL 70 PA18 106 GND 142 PB23
35 XOUT 71 PA19 107 PA21 143 PB24
36 XIN 72 PA20 108 PA25 144 PB25

42.4 144-ball LFBGA Pinout

ATMEL i

11057B-ATARM-28-May-12

ATMEL

Table 4-4. 144-ball LFBGA SAM3X4/8E Pinout
Al PA9 D1 PA17 G1 PAS K1 VDDCORE
A2 PB23 D2 PDO G2 PA7 K2 GNDUTMI
A3 PB14 D3 PA11 G3 PA8 K3 VDDPLL
A4 PC26 D4 PA15 G4 PA1 K4 NRSTB
A5 PC24 D5 PA14 G5 GND K5 SHDN
A6 PC20 D6 PC27 G6 GND K6 PC3
A7 PB10 D7 PC25 G7 GND K7 PC6
A8 PB6 D8 VDDIO G8 PC16 K8 PC7
A9 PB4 D9 PB5 G9 PC15 K9 PA18
A10 PC4 D10 PBO G10 PC13 K10 PA23
All PA28 D11 PC30 Gl1 PB13 K11 PA16
Al12 PA27 D12 PC19 G12 PB18 K12 PA24
Bl PA10 El PD1 H1 XOuT L1 DHSDP
B2 PB26 E2 PD2 H2 PB30 L2 DHSDM
B3 PB24 E3 PD3 H3 PB28 L3 VDDUTMI
B4 PC28 E4 PD4 H4 PB29 L4 JTAGSEL
BS PC23 ES PD5 H5 VDDBU LS GNDBU
B6 PCO E6 VDDCORE H6 VDDCORE L6 PC1
B7 PB9 E7 VDDCORE H7 VDDIO L7 PC2
B8 PB8 E8 VDDCORE H8 PC12 L8 PC5
B9 PB3 E9 PB1 H9 PC11 L9 PC9
B10 PB2 E10 PC18 H10 PA3 L10 PA20
B11 PA26 E1l1l PB19 H11 PB12 L11 VDDANA
B12 PA25 E12 PB21 H12 PA2 L12 PB16
C1 PA13 F1 PD8 J1 XIN M1 DFSDP
c2 PA12 F2 PD6 J2 GNDPLL M2 DFSDM
C3 PB25 F3 PD9 J3 PD10 M3 VBG
C4 PB22 F4 PAO J4 PB31 M4 VBUS
C5 PC22 F5 PD7 J5 TST M5 XIN32
C6 PC21 F6 GND J6 FWUP M6 XOUT32
Cc7 PB11 F7 GND J7 PB27 M7 vVDDOUT
Cc8 PB7 F8 VDDIO J8 NRST M8 VDDIN
C9 PC10 F9 PC17 J9 PA19 M9 PC8
C10 PA29 F10 PC14 J10 PA22 M10 GNDANA
C11 PA21 F11 PB20 J11 PA4 M11 ADVREF
C12 PC29 F12 PB17 J12 PAG M12 PB15

20

S A M B X A ————

11057B-ATARM-28-May-12

. S A\ V3 X/A

5. Power Considerations

5.1 Power Supplies
The SAM3X/A series product has several types of power supply pins:

« VDDCORE pins: Power the core, the embedded memories and the peripherals; voltage
ranges from 1.62V to 1.95V.

« VDDIO pins: Power the Peripherals 1/O lines; voltage ranges from 1.62V to 3.6V.

< VDDIN pin: Powers the Voltage regulator

« VDDOUT pin: It is the output of the voltage regulator.

< VDDBU pin: Powers the Slow Clock oscillator and a part of the System Controller; voltage
ranges from 1.62V to 3.6V. VDDBU must be supplied before or at the same time than VDDIO
and VDDCORE.

« VDDPLL pin: Powers the PLL A, UPLL and 3-20 MHz Oscillator; voltage ranges from 1.62V
to 1.95V.

« VDDUTMI pin: Powers the UTMI+ interface; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
« VDDANA pin: Powers the ADC and DAC cells; voltage ranges from 2.0V to 3.6V.
Ground pins GND are common to VDDCORE and VDDIO pins power supplies.

Separated ground pins are provided for VDDBU, VDDPLL, VDDUTMI and VDDANA. These
ground pins are respectively GNDBU, GNDPLL, GNDUTMI and GNDANA.

5.2 Voltage Regulator
The SAM3X/A series embeds a voltage regulator that is managed by the Supply Controller.

This internal regulator is intended to supply the internal core of SAM3X/A series but can be used
to supply other parts in the application. It features two different operating modes:

« In Normal mode, the voltage regulator consumes less than 700 YA static current and draws
150 mA of output current. Internal adaptive biasing adjusts the regulator quiescent current
depending on the required load current. In Wait Mode or when the output current is low,
guiescent current is only 7pA.

« In Shutdown mode, the voltage regulator consumes less than 1 pA while its output is driven
internally to GND. The default output voltage is 1.80V and the start-up time to reach Normal
mode is inferior to 400 ps.

For adequate input and output power supply decoupling/bypassing, refer to “Voltage Regulator”
in the “Electrical Characteristics” section of the product datasheet.

ATMEL 2

11057B-ATARM-28-May-12

ATMEL

5.3 Typical Powering Schematics

The SAM3X/A series supports a 1.62V-3.6V single supply mode. The internal regulator input
connected to the source and its output feeds VDDCORE. Figure 5-1 shows the power
schematics.

Figure 5-1. Single Supply

VDDBU :
— L]

VDDUTMI
L]

VDDANA
L]

VDDIO .
L]

Main Supply (1.8V-3.6V) VDDIN III
Voltage
) Regulator

VDDOUT E:l

I

VDDCOREE

VDDPLL III:

Note: Restrictions
For USB, VDDUTMI needs to be greater than 3.0V.
For ADC, VDDANA needs to be greater than 2.0V.
For DAC, VDDANA needs to be greater than 2.4V.

22 S A M B X A ————

SAM3X/A

Figure 5-2. Core Externally Supplied

VDDBU

VDDUTMI
*————— >

VDDANA

N e S S B

Main Supply (1.62V-3.6V) VDDIO

T

VDDIN

\oltage
Regulator

VDDOUT

VDDCORE Supply (1.62V-1.95V) \ppcoRE

VDDPLL

Note: Restrictions
For USB, VDDUTMI needs to be greater than 3.0V.
For ADC, VDDANA needs to be greater than 2.0V.
For DAC, VDDANA needs to be greater than 2.4V.

ATMEL 2

11057B-ATARM-28-May-12

5.4

5.5

55.1

24

AIMEL
Y)
Figure 5-3. Backup Batteries Used

FWUP Ij

SHDN

Backuwatteriesiﬂ,m
| VDDUTMI E:I
—>

VDDANA
—{]

VDDIO '
L]
/ VDDIN |I|
Main Supply (1.8V-3.6V) Voltage
) Regulator

VDDOUT [—
L EI.

I

VDDCORE m

VDDPLL El

Note: 1. Restrictions
For USB, VDDUTMI needs to be greater than 3.0V.
For ADC, VDDANA needs to be greater than 2.0V.
For DAC, VDDANA needs to be greater than 2.4V.

2. VDDUTMI and VDDANA cannot be left unpowered.

Active Mode

Active mode is the normal running mode with the core clock running from the fast RC oscillator,
the main crystal oscillator or the PLLA. The power management controller can be used to adapt
the frequency and to disable the peripheral clocks.

Low Power Modes
The various low power modes of the SAM3X/A series are described below:

Backup Mode
The purpose of backup mode is to achieve the lowest power consumption possible in a system
which is performing periodic wake-ups to perform tasks but not requiring fast startup time
(< 0.5ms).

S A M B X A ————

11057B-ATARM-28-May-12

. S A\ V3 X/A

55.2

553

Wait Mode

Sleep Mode

11057B-ATARM-28-May-12

The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz
Oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running.
The regulator and the core supply are off.

Backup Mode is based on the Cortex-M3 deep-sleep mode with the voltage regulator disabled.

The SAM3X/A series can be awakened from this mode through the Force Wake-up pin (FWUP),
and Wake-up input pins WKUPO to WKUP15, Supply Monitor, RTT or RTC wake-up event. Cur-
rent Consumption is 2.5 pA typical on VDDBU.

Backup mode is entered by using WFE instructions with the SLEEPDEEP bit in the System Con-
trol Register of the Cortex-M3 set to 1. (See the Power management description in the “ARM
Cortex M3 Processor” section of the product datasheet).

Exit from Backup mode happens if one of the following enable wake up events occurs:

* FWUP pin (low level, configurable debouncing)

« WKUPO-15 pins (level transition, configurable debouncing)
e SM alarm

* RTC alarm

* RTT alarm

The purpose of the wait mode is to achieve very low power consumption while maintaining the
whole device in a powered state for a startup time of less than 10 ps.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core,
peripherals and memories power supplies are still powered. From this mode, a fast start up is
available.

This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in
PMC_FSMR). The Cortex-M3 is able to handle external events or internal events in order to
wake-up the core (WFE). This is done by configuring the external lines WKUPO0-15 as fast
startup wake-up pins (refer to Section 5.7 “Fast Start-Up”). RTC or RTT Alarm and USB wake-up
events can be used to wake up the CPU (exit from WFE).

Current Consumption in Wait mode is typically 23 pA for total current consumption if the internal
voltage regulator is used or 15 pA if an external regulator is used.

Entering Wait Mode:

 Select the 4/8/12 MHz Fast RC Oscillator as Main Clock
« Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)
« Execute the Wait-For-Event (WFE) instruction of the processor

Note: Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN
bit and the effective entry in Wait mode. Depending on the user application, Waiting for
MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired
instructions.

The purpose of sleep mode is to optimize power consumption of the device versus response
time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. This
mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with LPM = 0 in

PMC_FSMR.
ATMEL 2

ATMEL

The processor can be awakened from an interrupt if WFI instruction of the Cortex M3 is used, or
from an event if the WFE instruction is used to enter this mode.

5.5.4 Low Power Mode Summary Table
The modes detailed above are the main low power modes. Each part can be set to on or off sep-
arately and wake-up sources can be individually configured. Table 5-1 below shows a summary
of the configurations of the low power modes..
Table 5-1. Low Power Mode Configuration Summary
Core PIO State
VDDBU Memory Potential Wake-up | Core at |whilein Low | PIO State | Consumption [Wake-up
Mode | Region? | Regulator | Peripherals| Mode Entry Sources Wake-up | Power Mode |at Wake-up @ Time®
PIOA &
PIOB &
FWUP pin PIOC &
WFE WKUPO-15 pins)
OFF OFF PIOD &
Bﬁg‘;‘f ON _ ;) +SLEEPDEEP |BOD alarm Reset |0V 25pAtyp® <05ms
SHDN =0 |(Not powered) bit = 1 RTC alarm PIOE &
RTT alarm PIOF
Inputs with
pull-ups
Any Event from: Fast
WFE startup through
Wait ON Powered | +SLEEPDEEP |WKUPO0-15 pins Clocked |Previous ®
Mode ON SHDN =1 | (Not clocked) bit=0 RTC alarm back state saved Unchanged |18.4 LA/26.6 pA™)< 10 ks
+LPMbit=1 |RTT alarm
USB wake-up
Entry mode = WFI
Interrupt Only;
Entry mode = WFE
o WFE or WFI' | Any Enabled Interrupt _
Sleep ON ON Powered +SLEEI3DEEP and/or Any Event from [Clocked |Previous Unchanged | e
Mode SHDN =1 | (Not clocked) bit = 0 Fast start-up through |back state saved
+LPM bit=0 |WKUPO-15 pins
RTC alarm
RTT alarm
USB wake-up
Notes: 1. SUPC, 32 kHz Oscillator, RTC, RTT, Backup Registers, POR.

2. The external loads on PIOs are not taken into account in the calculation.

3. BOD current consumption is not included.

4. When considering the wake-up time, the time required to start the PLL is not taken into account. Once started, the device
works with the 4/8/12 MHz Fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The
wake-up time is defined as the time taken for wake-up until the first instruction is fetched.

5. Current consumption on VDDBU.

6. 18.4 pA on VDDCORE, 26.6 pA for total current consumption (using internal voltage regulator).

Depends on MCK frequency. In this mode, the core is supplied and not clocked but some peripherals can be clocked.
26 S A M B X A ———— e —

11057B-ATARM-28-May-12

. S A\ V3 X/A

5.6 Wake-up Sources

Figure 5-4. Wake-up Source

rtc_alarm

rtt_alarm

The wake-up events allow the device to exit the backup mode. When a wake-up event is
detected, the Supply Controller performs a sequence which automatically reenables the core
power supply.

sm_int

RTCEN

RTTEN

bt

FWUP

Falling
Edge

Detector

En

FWUPDBC
SLCK

Lab

FWUPEN

Sl

WKUPO

Falling/Rising
Edge
Detector

— |WKUPENO | | WKUPISO
L

WKUPT1

WKUP1

Falling/Rising
Edge
Detector

|WKUPEN1 | | WKUPIS1 |

WKUPT15

WKUP15

LT T T

Falling/Rising
Edge
Detector

|WKUPEN15| | WKUPISlSl

11057B-ATARM-28-May-12

ATMEL

Debouncer

| FWUP I

Debouncer

WKUPDBC
SLCK WKUPS

Lsp>

@

Core

Supply
Restart

27

ATMEL

5.7 Fast Start-Up
The SAM3X/A series allows the processor to restart in a few microseconds while the processor
is in wait mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up
inputs.

The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast start-
up signal to the Power Management Controller. As soon as the fast start-up signal is asserted,
the PMC automatically restarts the embedded 4/8/12 MHz fast RC oscillator, switches the mas-
ter clock on this 4/8/12 MHz clock and reenables the processor clock.

Figure 5-5. Fast Start-Up Sources

usb_wakeup ___———— |

rtc_alarm ___ ———— |

rtt_alarm _ —————— |

FSTTO

High/Low
WKUPO Di Level

Detector > fast_restart

FSTT1

High/Low

WKUP1 Di Level
| Detector
1
I
I
1

High/Low
WKUP15 Di Level

Detector

FSTT15

i Tj1 Tj1

28 S A M B X A ————

11057B-ATARM-28-May-12

. S A\ V3 X/A

6. Input/Output Lines

The SAM3X/A has different kinds of input/output (1/0) lines, such as general purpose 1/0s
(GPIO) and system I/Os. GPIOs can have alternate functions thanks to multiplexing capabilities
of the PI1O controllers. The same PIO line can be used whether in IO mode or by the multiplexed
peripheral. System I/Os include pins such as test pins, oscillators, erase or analog inputs.

With a few exceptions, the 1/Os have input schmitt triggers. Refer to the footnotes associated
with PIOA to PIOF on page 13, at the end of Table 3-1, “Signal Description List”.

6.1 General Purpose I/O Lines (GPIO)

GPIO Lines are managed by PIO Controllers. All I/0Os have several input or output modes such
as pull-up, input schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input
change interrupt. Programming of these modes is performed independently for each 1/O line
through the PIO controller user interface. For more details, refer to the “PIO Controller” section
of the product datasheet.

The input output buffers of the PIO lines are supplied through VDDIO power supply rail.

The SAM3X/A embeds high speed pads able to handle up to 65 MHz for HSMCI and SPI clock
lines and 45 MHz on other lines. See product AC Characteristics for more details. Typical pull-up
value is 100 kQfor all I/Os.

Each 1/O line also embeds an ODT (On-Die Termination), (see Figure 6-1 below). ODT consists
of an internal series resistor termination scheme for impedance matching between the driver
output (SAM3) and the PCB track impedance preventing signal reflection. The series resistor
helps to reduce 10s switching current (di/dt) thereby reducing in turn, EMI. It also decreases
overshoot and undershoot (ringing) due to inductance of interconnect between devices or
between boards. In conclusion, ODT helps reducing signal integrity issues.

Figure 6-1. On-Die Termination

”””””””””””””””” Z0 ~ Zout + Rodt

H 1
' 1
| 1
oDT
! 36 OhmsTyp. !
! 1
: 77777777777
1
E Rodt |
| L 1
E E Receiver
! SAM3 Driver with ! PCBTrace
E Zout ~ 10 Ohms E Z0~ 50 Ohms

6.2 System I/O Lines

11057B-ATARM-28-May-12

System 1/O lines are pins used by oscillators, test mode, reset, flash erase and JTAG to name
but a few. Described below are the SAM3X/A system 1/O lines shared with PIO lines.

These pins are software configurable as general purpose I/O or system pins. At startup, the
default function of these pins is always used.

ATMEL 2

ATMEL

Table 6-1. System I/O Configuration Pin List
SYSTEM_IO Default Function Constraints for
Bit Number Peripheral After Reset Other Function Normal Start Configuration
In Matrix User Interface Registers
12 ERASE PCO Low Levﬂ)at (Refer to f‘System 10 Configuratipn
startup Register” in the “Bus Matrix“ section
of the product datasheet.)
A TCK/SWCLK PB28 -
A TDI PB29 -
In P1O Controller
A TDO/TRACESWO PB30 -
A TMS/SWDIO PB31 -
Note: 1. If PCOis used as PIO input in user applications, a low level must be ensured at startup to pre-
vent Flash erase before the user application sets PCO into PIO mode.
6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) Pins

6.3 Test Pin

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on
a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference
and reset state, refer to Table 3-1.

At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging
probe. Please refer to the “Debug and Test” section of the product datasheet.

SWJ-DP pins can be used as standard I/Os to provide users with more general input/output pins
when the debug port is not needed in the end application. Mode selection between SWJ-DP
mode (System 10 mode) and general 10 mode is performed through the AHB Matrix Special
Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing
and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It
integrates a permanent pull-down resistor of about 15 kQto GND, so that it can be left uncon-
nected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and
TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire
Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous
trace can only be used with SW-DP, not JTAG-DP. For more information about SW-DP and
JTAG-DP switching, please refer to the “Debug and Test” section of the product datasheet.

All JTAG signals are supplied with VDDIO except JTAGSEL, supplied by VDDBU.

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming
mode of the SAM3X/A series. The TST pin integrates a permanent pull-down resistor of about
15 kQto GND, so that it can be left unconnected for normal operations. To enter fast program-
ming mode, see the “Fast Flash Programming Interface” section. For more information on the
manufacturing and test mode, refer to the “Debug and Test” section of the product datasheet.

30 S A M B X A ————

11057B-ATARM-28-May-12

. S A\ V3 X/A

6.4 NRST Pin

6.5 NRSTB Pin

6.6 ERASE Pin

11057B-ATARM-28-May-12

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low
to provide a reset signal to the external components, or asserted low externally to reset the
microcontroller. It will reset the Core and the peripherals except the Backup region (RTC, RTT
and Supply Controller). There is no constraint on the length of the reset pulse, and the reset con-
troller can guarantee a minimum pulse length.

The NRST pin integrates a permanent pull-up resistor to VDDIO of about 100 kQ

The NRSTB pin is input only and enables asynchronous reset of the SAM3X/A series when
asserted low. The NRSTB pin integrates a permanent pull-up resistor of about 15 kQ This allows
connection of a simple push button on the NRSTB pin as a system-user reset. In all modes, this
pin will reset the chip including the Backup region (RTC, RTT and Supply Controller). It reacts as
the Power-on reset. It can be used as an external system reset source. In harsh environments, it
is recommended to add an external capacitor (10 nF) between NRSTB and VDDBU. (For filter-
ing values, refer to “I/O characteristics” in the “Electrical Characteristics” section of the product
datasheet)

It embeds an anti-glitch filter.

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased
state (all bits read as logic level 1). It integrates a pull-down resistor of about 100 kQ2to GND, so
that it can be left unconnected for normal operations.

This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high
during less than 100 ms, it is not taken into account. The pin must be tied high during more than
220 ms to perform a Flash erase operation.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE
pin is not configured as a PIO pin. If the ERASE pin is used as a standard 1/O, the startup level
of this pin must be low to prevent unwanted erasing. Please refer to Section 11.3 “Peripheral
Signal Multiplexing on I/O Lines”. Also, if the ERASE pin is used as a standard 1/O output,
asserting the pin to low does not erase the Flash.

ATMEL 2

7. Processor and Architecture

7.1 ARM Cortex-M3 Processor
* Version 2.0
* Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16-bit and 32-bit.
» Harvard processor architecture enabling simultaneous instruction fetch with data load/store.
» Three-stage pipeline.
* Single cycle 32-bit multiply.
» Hardware divide.
e Thumb and Debug states.
» Handler and Thread modes.
* Low latency ISR entry and exit.

7.2 APB/AHB Bridge
The SAM3X/A series product embeds two separate APB/AHB bridges:

« a low speed bridge
« a high speed bridge
This architecture enables a concurrent access on both bridges.

SPI, SSC and HSMCI peripherals are on the high-speed bridge connected to DMAC with the
internal FIFO for Channel buffering.

UART, ADC, TWIO0-1, USARTO-3, PWM, DAC and CAN peripherals are on the low-speed bridge
and have dedicated channels for the Peripheral DMA Channels (PDC). Please not that
USARTO-1 can be used with the DMA as well.

The peripherals on the high speed bridge are clocked by MCK. On the low-speed bridge, CAN
controllers can be clocked at MCK divided by 2 or 4. Refer to the Power Management Controller
(PMC) section of the Full datasheet for further details.

7.3 Matrix Masters
The Bus Matrix of the SAM3X/A series product manages 5 (SAM3A) or 6 (SAM3X) masters,
which means that each master can perform an access, concurrently with others, to an available
slave.

Each master has its own decoder, which is defined specifically for each master. In order to sim-
plify the addressing, all masters have the same decodings.

Table 7-1. List of Bus Matrix Masters

Master O Cortex-M3 Instruction/Data
Master 1 Cortex-M3 System
Master 2 Peripheral DMA Controller (PDC)
Master 3 USB OTG High Speed DMA
Master 4 DMA Controller
Master 5 Ethernet MAC (SAM3X)
32 SAMIX/ A ————————

11057B-ATARM-28-May-12

. S A\ V3 X/A

7.4 Matrix Slaves

The Bus Matrix of the SAM3X/A series product manages 9 slaves. Each slave has its own arbi-
ter, allowing a different arbitration per slave.

Table 7-2.

List of Bus Matrix Slaves

Slave 0

Internal SRAMO

Slave 1

Internal SRAM1

Slave 2

Internal ROM

Slave 3

Internal Flash

Slave 4

USB High Speed Dual Port RAM (DPR)

Slave 5

NAND Flash Controller RAM

Slave 6

External Bus Interface

Slave 7

Low Speed Peripheral Bridge

Slave 8

High Speed Peripheral Bridge

7.5 Master to Slave Access

All the Masters can normally access all the Slaves. However, some paths do not make sense,
for example allowing access from the USB High Speed DMA to the Internal Peripherals. Thus,

these paths are forbidden or simply not wired, and shown as

“-"in the following table.

Table 7-3. SAM3X/A Series Master to Slave Access
Masters 0 1 2 3 4 5
Cortex-M3 | Cortex-M3 S USB High DMA EMAC
Slaves I/D Bus Bus PDC | Speed DMA | Controller DMA
0 Internal SRAMO - X X X X X
1 Internal SRAM1 - X X X X X
2 Internal ROM X - X X X X
3 Internal Flash X - - - - -
4 USB High Speed Dual Port RAM - X - - X -
5 Nand Flash Controller RAM - X X X X X
6 External Bus Interface - X X X X X
7 Low Speed Peripheral Bridge - X X - X -
8 High Speed Peripheral Bridge - X - - X -

11057B-ATARM-28-May-12

ATMEL

33

ATMEL

7.6 DMA Controller
« Acting as one Matrix Master
* Embeds 4 (SAM3A and 100-pin SAM3X) or 6 (144-pin SAM3X) channels

Table 7-4. DMA Channels

SAM3A
DMA Channel Size 100-pin SAM3X 144-pin SAM3X
8 bytes FIFO for Channel Bufferin 3 4
v 9 | (Channels0,1and2) | (Channels 0, 1, 2 and 4)
1 2
32 bytes FIFO for Channel Bufferin
4 g (Channel 3) (Channels 3 and 5)

* Linked List support with Status Write Back operation at End of Transfer
« Word, HalfWord, Byte transfer support.

« Handles high speed transfer of SPI0-1, USARTO-1, SSC and HSMCI (peripheral to memory;,
memory to peripheral)

* Memory to memory transfer

» Can be triggered by PWM and T/C which enables to generates waveform though the
External Bus Interface

The DMA controller can handle the transfer between peripherals and memory and so receives
the triggers from the peripherals below. The hardware interface numbers are also given in Table
7-5.

Table 7-5. DMA Controller

DMA Channel HW

Instance Name Channel T/R Interface Number
HSMCI Transmit/Receive 0
SPIO Transmit 1
SPIO Receive 2
SSC Transmit 3
SSC Receive 4
SPI1 Transmit 5
SPI1 Receive 6
TWIO Transmit 7
TWIO Receive 8
USARTO Transmit 11
USARTO Receive 12
USART1 Transmit 13
USART1 Receive 14
PWM Transmit 15

34 SAMIX/ A ————————

11057B-ATARM-28-May-12

. S A\ V3 X/A

7.7 Peripheral DMA Controller
« Handles data transfer between peripherals and memories
* Low bus arbitration overhead
— One Master Clock cycle needed for a transfer from memory to peripheral
— Two Master Clock cycles needed for a transfer from peripheral to memory
« Next Pointer management for reducing interrupt latency requirement
The Peripheral DMA Controller handles transfer requests from the channel according to the fol-
lowing priorities (Low to High priorities):

Table 7-6. Peripheral DMA Controller

Instance Name Channel T/R 144 Pins 100 Pins
DAC Transmit X X
PWM Transmit X X
TWI1 Transmit X X
TWIO Transmit X X

USART3 Transmit X X
USART2 Transmit X X
USART1 Transmit X X
USARTO Transmit X X
UART Transmit X X
ADC Receive X X
TWI1 Receive X X
TWIO Receive X X
USART3 Receive X N/A
USART2 Receive X X
USART1 Receive X X
USARTO Receive X X
UART Receive X X

ATMEL 5

11057B-ATARM-28-May-12

ATMEL

7.8 Debug and Test Features

» Debug access to all memory and registers in the system, including Cortex-M3 register bank
when the core is running, halted, or held in reset

« Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access
* Flash Patch and Breakpoint (FPB) unit for implementing break points and code patches

« Data Watchpoint and Trace (DWT) unit for implementing watch points, data tracing, and
system profiling
« Instrumentation Trace Macrocell (ITM) for support of printf style debugging
IEEE® 1149.1 JTAG Boundary-scan on all digital pins

36 S A M B X A ————

11057B-ATARM-28-May-12

8. Product Mapping
Figure 8-1.

SAM3X/A Product Mapping

Code

Boot Memory

0x00000000

Address memory space
.0X00000000. b 0x40000000 Peripherals
HSMCI
0x00080000 Code 040004000 21
Internal Flash 0 R : SsC
HALF_FLASHSIZE ~ 0x20000000: _-*” 0x40008000 26
Internal Flash 1 Lo’ ".' ‘," SPIO
0x00100000 It SRAM e 0x4000C000 24
Internal ROM LT ," ’»" SPI1
0x00200000 ~ 0x40000000 ’ 0x40080000 Gl
Reserved JPie S K T 1o
OX1FFFFFFF Re S Peripherals +0x40 z
B /. T 1y
HALF_FLASHSIZE address: S ‘ c 28
- 512kB products: 0x000C0000 ,° 0x6000000, +0x80
- 256kB products: 0x000A0000 s K B 0 co TC2
- 128kB products: OXOOOQOOOOI; ’,' K External SRAM . 0x40084000 - 29
R | TC3
K .’ 0XAQDO0000 i +0x40 30
SRAM . S /| \ B (X
. S . \
0x20000000 ., E R, 3 OxE0 31
SRAMO S . 5 LS
.’ ' L}
0x20080000 * +* 4,£0000800 B 0x40088000 32
SRAM1 o K . €2 e
0x20100000 . ! v 33
i ! System ' +0x40,
NFC (SRAM) oo ; B €2 L,
0x20180006 . | 34
16009 OXFFFFFFFF \ +0X80
UOTGHS (DMA) S ' \ Tc2
‘o N System controller ' TC8
0x20200000 , 0x400EQ000 OxA008C000 35
Undefined (Abort) |« ./ / sSMC ! B x Wi
, , \
0x40000000 : 91 0x400£0200 2
X K <DRAM . 8 0x40090000
External SRAM ! ' \ WL
0x60000000 ; 0x400E0400 23
s J VATRIX] . 0x40094000
; \ \
0x61000000 : 0X400E060Q Ox40098000 PwM 36
cs1 : PMC) | x
0x62000000 51 0x400E0800 s USARTO
2 / UART ' | 0x4009C000
0x63000000 8] ox4boE0940 USARTL ¢
s . cHPID T \ 0x400A0000
., \ \
0x64000000 ' 0X400EOAQ0 USARTZ o
s : EEFCO . * Ox400A4000
: : , ART3
0x65000000 61 oxaooEoc00 us 20
s k . : . 0x400A8000
0x66000000 7§ 0x400E0E00 \ Reserved
cs6é 3 PIOA H \ OX400AC000
. . , UOTGHS
0X67000000 11 0x400E1000 | 40
cs7 \ PoB . , 0x400B0000
0x68000000 121 0x400E1200 "o 40054000 EMAC 42
NFC ; PIOC ' W cAND
0x63000000 131 0x400E1400 . 43
Reserved N PIOD H O¥4OOBBOOO
: \ CAN1
0x70000000 14, ox400E1604 \ 24
CS SDRAMC : PIOE v Oxqo08co00
\ \ TRNG
($x80000000 151 ox400E1800" : 41
Reserved ‘ PIOF \ OX4Q|OCOOOO
OXQFFFFFFF 161 oxa00E1A00 | ADC 37
RSTC \ 0x400C4000
11 oxa00E1A10 b , DMAC 39
supe 1 0x400C8000
B N DACC
OX400E1A30 ' \ 38
RTT . 0x400D0000
\ :
31 oxo0E1A50 b s Reserved
wor 1= - OX400EQ
' I
4 OXA00ELAG0 R 3 System controller
s == DX
RTC 2 L H Reserved
OX400E1A9Q
oPBR i 0x60000000
0x400E1ABO
Reserved ,"
‘Ox4007FFFF

ATMEL

37

9. Memories

ATMEL

9.1 Embedded Memories

9.1.1 Internal SRAM

9.1.2 Internal ROM

« The 144-pin SAM3X and 217-pin SAM3X8H® products embed a total of 100 Kbytes high-
speed SRAM (64 Kbytes SRAMO, 32 Kbytes SRAM1 and 4 Kbytes NAND Flash Controller).

» The 100-pin SAM3A/X8 product embeds a total of 96 Kbytes high-speed SRAM (64 Kbytes
SRAMO and 32 Kbytes SRAM1).

« The 144-pin SAM3X and 217-pin SAM3X8H® products embed a total of 68 Kbytes high-
speed SRAM (32 Kbytes SRAMO, 32 Kbytes SRAM1 and 4Kbyte NAND Flash Controller).

» The 100-pin SAM3A/4 product embeds a total of 64 Kbytes high-speed SRAM (32 Kbytes
SRAMO, 32 Kbytes SRAM1).

The SRAMO is accessible over System Cortex-M3 bus at address 0x2000 0000 and SRAM1 at
address 0x2008 0000. The user can see the SRAM as contiguous thanks to mirror effect, giving
0x2007 0000 - 0x2008 7FFF for SAM3X/A8, 0x2007 8000 - 0x2008 7FFF for SAM3X/AA4.

The SRAMO and SRAM1 are in the bit band region. The bit band alias region is mapped from
0x2200 0000 to 0x23FF FFFF.

The NAND Flash Controller embeds 4224 bytes of internal SRAM. If the NAND Flash controller
is not used, these 4224 Kbytes of SRAM can be used as general purpose. It can be seen at
address 0x2010 0000.

Note: 1. This device is not commercially available. Mounted only on the SAM3X-EK evaluation Kkit.

The SAM3X/A series product embeds an Internal ROM, which contains the SAM-BA and FFPI
program.

At any time, the ROM is mapped at address 0x0018 0000.

9.1.3 Embedded Flash

9.1.3.1 Flash Overview

* The Flash of the SAM3A/X8 is organized in two banks of 1024 pages (dual plane) of
256 bytes.

» The Flash of the SAM3A/X4 is organized in two banks of 512 pages (dual plane) of
256 hytes.

The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.

9.1.3.2 Flash Power Supply

The Flash is supplied by VDDCORE.

9.1.3.3 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the mas-
ters of the system. It enables reading the Flash and writing the write buffer. It also contains a
User Interface, mapped within the Memory Controller on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32-
bit internal bus. Its 128-bit wide memory interface increases performance.

38 S A M B X A ————

11057B-ATARM-28-May-12

. S A\ V3 X/A

The user can choose between high performance or lower current consumption by selecting
either 128-bit or 64-bit access. It also manages the programming, erasing, locking and unlocking
sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system
about the Flash organization, thus making the software generic.

9.1.34 Lock Regions
Several lock bits used to protect write and erase operations on lock regions. A lock region is
composed of several consecutive pages, and each lock region has its associated lock bit.

Table 9-1. Number of Lock Bits

Product Number of Lock Bits Lock Region Size
SAM3X/A8 32 16 kbytes (64 pages)
SAM3X/A4 16 16 kbytes (64 pages)

If a locked-region’s erase or program command occurs, the command is aborted and the EEFC
triggers an interrupt.

The lock bits are software programmable through the EEFC User Interface. The “Set Lock Bit”
command enables the protection. The “Clear Lock Bit” command unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

9.1.35 Security Bit Feature
The SAM3X/A series features a security bit, based on a specific General Purpose NVM bit
(GPNVM bit 0). When the security is enabled, any access to the Flash, either through the ICE
interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confi-
dentiality of the code programmed in the Flash.

This security bit can only be enabled through the “Set General Purpose NVM Bit 0" command of
the EEFCO User Interface. Disabling the security bit can only be achieved by asserting the
ERASE pin at 1, and after a full Flash erase is performed. When the security bit is deactivated,
all accesses to the Flash are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal
operation. However, it is safer to connect it directly to GND for the final application.

9.1.3.6 Calibration Bits
NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are
factory configured and cannot be changed by the user. The ERASE pin has no effect on the cal-
ibration bits.

9.1.3.7 Unique Identifier
Each device integrates its own 128-bit unique identifier. These bits are factory configured and
cannot be changed by the user. The ERASE pin has no effect on the unique identifier.

9.1.3.8 Fast Flash Programming Interface
The Fast Flash Programming Interface allows device programming through multiplexed fully-
handshaked parallel port. It allows gang programming with market-standard industrial

programmers.
ATMEL s

11057B-ATARM-28-May-12

ATMEL

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect
commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered
when TST, PAO, PA1 are set to high, PA2 and PAS are set to low and NRST is toggled from 0
to 1.

The table below shows the signal assignment of the PIO lines in FFPI mode

Table 9-2. FFPI PIO Assignment

FFPI Signal PIO Used

PGMNCMD PAO
PGMRDY PAl
PGMNOE PA2

PGMNVALID PA3
PGMM[0] PA4
PGMMI[1] PA5
PGMM[2] PAG
PGMM[3] PA7
PGMDJ[0] PA8
PGMDJ[1] PA9
PGMD[2] PA10
PGMDI[3] PA11
PGMD[4] PA12
PGMDJ[5] PA13
PGMDI[6] PAl4
PGMDJ[7] PA15
PGMDJ[8] PA16
PGMDI9] PA17
PGMD[10] PA18
PGMDI[11] PA19
PGMD[12] PA20
PGMD[13] PA21
PGMD[14] PA22
PGMDI[15] PA23

9.1.3.9 SAM-BA® Boot
The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the
on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the UART and USB.
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

40 S A M B X A ————

. S A\ V3 X/A

The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set
to 0.

9.1.3.10 GPNVM Bits
The SAM3X/A series features three GPNVM bits that can be cleared or set respectively through
the “Clear GPNVM Bit” and “Set GPNVM Bit” commands of the EEFCO User Interface.

Table 9-3. General Purpose Non-volatile Memory Bits
GPNVMBIt[#] Function
0 Security bit
1 Boot mode selection
2 Flash selection (Flash 0 or Flash 1)

9.14 Boot Strategies
The system always boots at address 0x0. To ensure maximum boot possibilities, the memory
layout can be changed via GPNVM.

A general-purpose NVM (GPNVM1) bit is used to boot either on the ROM (default) or from the
Flash.

The GPNVM bit can be cleared or set respectively through the "Clear General-purpose NVM Bit"
and "Set General-purpose NVM Bit" commands of the EEFC User Interface.

Setting GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the ROM.
Asserting ERASE clears GPNVM Bit 1 and thus selects the boot from the ROM by default.

GPNVM2 enables to select if Flash 0 or Flash 1 is used for the boot.
Setting GPNVM bit 2 selects the boot from Flash 1, clearing it selects the boot from Flash 0.

9.2 External Memories
The 144-pin SAM3X and 217-pin SAM3X8H® feature one External Memory Bus to offer inter-
face to a wide range of external memories and to any parallel peripheral.

Note: 1. This device is not commercially available. Mounted only on the SAM3X-EK evaluation kit.

9.2.1 External Memory Bus
* Integrates Four External Memory Controllers:
— Static Memory Controller
— NAND Flash Controller
— SLC NAND Flash ECC Controller
— Single Data Rate Synchronous Dynamic Random Access Memory (SDR-SDRAM)
« Up to 24-bit Address Bus (up to 16 MBytes linear per chip select)
« Up to 8 chip selects, Configurable Assignment

9.2.2 Static Memory Controller
« 8- or 16-bit Data Bus

« Multiple Access Modes supported
— Byte Write or Byte Select Lines
— Asynchronous read in Page Mode supported (4- up to 32-byte page size)

ATMEL i

11057B-ATARM-28-May-12

ATMEL

« Multiple device adaptability

— Control signals programmable setup, pulse and hold time for each Memory Bank
* Multiple Wait State Management

— Programmable Wait State Generation

— External Wait Request

— Programmable Data Float Time
« Slow Clock mode supported

9.2.3 NAND Flash Controller
» Handles automatic Read/write transfer through 4224 bytes SRAM buffer
* DMA support

 Supports SLC NAND Flash technology
* Programmable timing on a per chip select basis
» Programmable Flash Data width 8-bit or 16-bit

9.24 NAND Flash Error Corrected Code Controller
* Integrated in the NAND Flash Controller
« Single bit error correction and 2-bit Random detection.
» Automatic Hamming Code Calculation while writing
— ECC value available in a register
« Automatic Hamming Code Calculation while reading

— Error Report, including error flag, correctable error flag and word address being
detected erroneous

— Support 8- or 16-bit NAND Flash devices with 512-, 1024-, 2048- or 4096-byte
pages

42 S A M B X A ————

. S A\ V3 X/A

9.25 SDR-SDRAM Controller (217-pin SAM3X8H® only)
« Numerous configurations supported
— 2K, 4K, 8K Row Address Memory Parts
— SDRAM with two or four Internal Banks
— SDRAM with 16-bit Data Path
* Programming facilities
— Word, half-word, byte access
— Automatic page break when Memory Boundary has been reached
— Multibank Ping-pong Access
— Timing parameters specified by software
— Automatic refresh operation, refresh rate is programmable
« Energy-saving capabilities
— Self-refresh, and Low-power Modes supported
« Error detection
— Refresh Error Interrupt
* SDRAM Power-up Initialization by software
« Latency is set to two clocks (CAS Latency of 1, 3 Not Supported)
¢ Auto Precharge Command not used

» Mobile SDRAM supported (except for low-power extended mode and deep power-down
mode)

Note: 1. This device is not commercially available. Mounted only on the SAM3X-EK evaluation Kkit.

ATMEL i

11057B-ATARM-28-May-12

ATMEL

10. System Controller

The System Controller is a set of peripherals, which allow handling of key elements of the sys-
tem such as power, resets, clocks, time, interrupts, watchdog, etc...

The System Controller User Interface also embeds the registers allowing to configure the Matrix
and a set of registers configuring the SDR-SDRAM chip select assignment.

44 S A M B X A ————

SAM3X/A

Figure 10-1. System Controller Block Diagram
VDDBU VDDIN

L]
vr_standby Suftware Controlled VDDOUT
oftware Controlle
FWUP Voltage Regulator D- b |
1
SHDN 1
< WKUPO -wkup1s I
1
NRSTB Supply 1
Controller VbDIo 1
1
PIOA/BIC/DIE/F PIOX 1
Input/ Output Buffers 1
Zero-Power 1
Power-on Reset VDDANA 1
1
1
1
General Purpose —| I ADVREF 1
Backup Registers ADC & DAC _D ADx 1
1
-] pacx I
SLCK rec_alarm
RTC f 1
bodbup_in
— VDDUTMI
Supply !
bodbup_on _| Monitor I 1
1
SLCK rit_alarm 1
RTT USB ——] usex 1
1
1
osc32k_xtal_en 1
vddcore_nreset REBRCORE 1
XIN32 tal 32 kHz XTALSEL I [:I(-=====-!
Oscillator
Xoutsz bodcore_on Brownout
Embedded bodcore_in Detector
32kHz RC| 55¢32k rc_en supc_interrupt
Oscillator
€| SRAM fe—d
Backup Power Supply
Peripherals |
—> proc_nreset
vddcore_nreset Reset proc_ i
—> Controller [~ Periph_nreset Cortex-M3 [«@=P»{ Matrix
—> ice_nreset
NRST D<—> - = Peripheral
Bridge
FSTTO - FSTT150) D) <—> Flash —
Embedded SLCK—>
12/8/4 MHz N
RC Main Clock % Clock
Oscillator MAINCK aster Cloc
| I Mar?;\ﬂéirwenr MEK
XIN X1§AL200 M:I—'Z N Congt;roller
XOUT D scillator
MAINCK PLLACK Watchdog
—>
PLLA ELCK Timer
MAINCK UPLLCK
UPLL Core Power Supply

FSTTO - FSTT15 are possible Fast Startup Sources, generated by WKUPO-WKUP15 Pins,
but are not physical pins.

ATMEL i

11057B-ATARM-28-May-12

ATMEL

10.1 System Controller and Peripherals Mapping
Please refer to Figure 8-1 on page 37.

All the peripherals are in the bit band region and are mapped in the bit band alias region.

10.2 Power-on-Reset, Brownout and Supply Monitor
The SAM3X/A embeds three features to monitor, warn and/or reset the chip:

* Power-on-Reset on VDDBU
¢ Brownout Detector on VDDCORE
* Supply Monitor on VDDUTMI

10.2.1 Power-on-Reset on VDDBU
The Power-on-Reset monitors VDDBU. It is always activated and monitors voltage at start up
but also during power down. If VDDBU goes below the threshold voltage, the entire chip is reset.
For more information, refer to the “Electrical Characteristics” section of the product datasheet.

10.2.2 Brownout Detector on VDDCORE
The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by soft-
ware through the Supply Controller (SUPC_MR). It is especially recommended to disable it
during low-power modes such as wait or sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more infor-
mation, refer to the “Supply Controller” and “Electrical Characteristics” sections of the product
datasheet.

10.2.3 Supply Monitor on VDDUTMI
The Supply Monitor monitors VDDUTMIL. It is not active by default. It can be activated by soft-
ware and is fully programmable with 16 steps for the threshold (between 1.9V to 3.4V). It is
controlled by the Supply Controller (SUPC). A sample mode is possible. It allows to divide the
supply monitor power consumption by a factor of up to 2048. For more information, refer to the
“SUPC" and “Electrical Characteristics” sections of the product datasheet.

46 S A M B X A ————

. S A\ V3 X/A

11. Peripherals

11.1 Peripheral Identifiers

Table 11-1 defines the Peripheral Identifiers of the SAM3X/A series. A peripheral identifier is
required for the control of the peripheral interrupt with the Nested Vectored Interrupt Controller
and for the control of the peripheral clock with the Power Management Controller.

Note that some Peripherals are always clocked. Please refer to the table below.

Table 11-1. Peripheral Identifiers

Instance ID Instance Name NVIC Interrupt PMC Clock Control Instance Description

0 SUPC X Supply Controller

1 RSTC X Reset Controller

2 RTC X Real Time Clock

3 RTT X Real Time Timer

4 WDG X Watchdog Timer

5 PMC X Power Management Controller

6 EEFCO X Enhanced Flash Controller O

7 EEFC1 X Enhanced Flash Controller 1

8 UART X Universal Asynchronous Receiver Transceiver
Static Memory Controller /

9 SMC_SDRAMC X X Synchronous Dynamic RAM Controller

10 SDRAMC X Synchronous Dynamic RAM Controller

11 PIOA X X Parallel I/O Controller A

12 PIOB X X Parallel I/O Controller B

13 PIOC X X Parallel I/O Controller C

14 PIOD X X Parallel I/O Controller D

15 PIOE X X Parallel I/O Controller E

16 PIOF X X Parallel I/O Controller F

17 USARTO X X USART 0

18 USART1 X X USART 1

19 USART2 X X USART 2

20 USART3 X X USART 3

21 HSMCI X X High Speed Multimedia Card Interface

22 TWIO X X Two-Wire Interface O

23 TWIL1 X X Two-Wire Interface 1

24 SPIO X X Serial Peripheral Interface

25 SPI1 X X Serial Peripheral Interface

26 SSC X X Synchronous Serial Controller

27 TCO X X Timer Counter O

28 TC1 X X Timer Counter 1

ATMEL i

11057B-ATARM-28-May-12

ATMEL

Table 11-1. Peripheral Identifiers (Continued)

Instance ID Instance Name NVIC Interrupt PMC Clock Control Instance Description
29 TC2 X X Timer Counter 2
30 TC3 X X Timer Counter 3
31 TC4 X X Timer Counter 4
32 TC5 X X Timer Counter 5
33 TC6 X X Timer Counter 6
34 TC7 X X Timer Counter 7
35 TC8 X X Timer Counter 8
36 PWM X X Pulse Width Modulation Controller
37 ADC X X ADC Controller
38 DACC X X DAC Controller
39 DMAC X X DMA Controller
40 UOTGHS X X USB OTG High Speed
41 TRNG X X True Random Number Generator
42 EMAC X X Ethernet MAC
43 CANO X X CAN Controller O
44 CAN1 X X CAN Controller 1

11.2 APB/AHB Bridge

The SAM3X/A series product embeds two separate APB/AHB bridges:

 a low speed bridge
« a high speed bridge
This architecture enables a concurrent access on both bridges.

SPI, SSC and HSMCI peripherals are on the high-speed bridge connected to DMAC with the
internal FIFO for Channel buffering.

UART, ADC, TWI0-1, USARTO0-3, PWM, DAC and CAN peripherals are on the low-speed bridge
and have dedicated channels for the Peripheral DMA Channels (PDC). Please not that
USARTO-1 can be used with the DMA as well.

The peripherals on the high speed bridge are clocked by MCK. On the low-speed bridge, CAN
controllers can be clocked at MCK divided by 2 or 4. Refer to the Power Management Controller
(PMC) section of the Full datasheet for further details.

11.3 Peripheral Signal Multiplexing on I/O Lines

The SAM3X/A series product features 3 PIO (SAM3A and 100-pin SAM3X) or 4 P10 (144-pin
SAM3X) or 6 PIO (217-pin SAM3X8H™®) controllers, PIOA, PIOB, PIOC, PIOD, PIOE and PIOF,
which multiplexes the 1/O lines of the peripheral set.

Each PIO Controller controls up to 32 lines. Each line can be assigned to one of two peripheral
functions, A or B. The multiplexing tables in the following paragraphs define how the I/O lines of
the peripherals A and B are multiplexed on the PIO Controllers. The column “Comments” has
been inserted in this table for the user's own comments; it may be used to track how pins are
defined in an application.

48 S A M B X A ————

11057B-ATARM-28-May-12

. S A\ V3 X/A

Note that some peripheral function, which are output only, might be duplicated within both
tables.

Note: 1. This device is not commercially available. Mounted only on the SAM3X-EK evaluation kit.

ATMEL i

11057B-ATARM-28-May-12

ATMEL

11.3.1 P1O Controller A Multiplexing

Table 11-2. Multiplexing on PIO Controller A (PIOA)

1/0 Line Peripheral A Peripheral B Extra Function Comments

PAO CANTXO PWML3

PAl CANRXO PCKO WKUPO

PA2 TIOAL NANDRDY ADO

PA3 TIOB1 PWMFI1 AD1/WKUP1

PA4 TCLK1 NWAIT AD2

PA5 TIOA2 PWMFIO WKUP2

PAG6 TIOB2 NCSO AD3

PA7 TCLK2 NCS1 WKUP3

PA8 URXD PWMHO WKUP4

PA9 UTXD PWMH3

PA10 RXDO DATRG WKUP5

PA11 TXDO ADTRG WKUP6

PA12 RXD1 PWML1 WKUP7

PA13 TXD1 PWMH2

PA14 RTS1 TK

PA15 CTS1 TF WKUPS8

PA16 SPCK1 TD AD7

PA17 TWDO SPCKO

PA18 TWCKO A20 WKUP9

PA19 MCCK PWMH1

PA20 MCCDA PWML2

PA21 MCDAO PWMLO

PA22 MCDA1 TCLK3 AD4

PA23 MCDA2 TCLK4 AD5

PA24 MCDA3 PCK1 ADG6

PA25 SPI0_MISO Al18

PA26 SPIO_MOSI Al9

PA27 SPIO_SPCK A20 WKUP10

PA28 SPIO_NPCSO PCK2 WKUP11

PA29 SPI0_NPCS1 NRD

PA30 SPIO_NPCS2 PCK1 217 pins

PA31 SPIO_NPCS3 PCK2 217 pins
50 SAMIX/ A ————————

11057B-ATARM-28-May-12

. S A\ V3 X/A

11.3.2 P10 Controller B Multiplexing

Table 11-3. Multiplexing on PIO Controller B (PIOB)

1/0 Line Peripheral A Peripheral B Extra Function Comments
PBO ETXCK/EREFCK TIOA3 @ See the Notes
PB1 ETXEN @ TIOB3 @ See the Notes
PB2 ETX0 ® TIOA4 @ See the Notes
PB3 ETX1® TioB4 @ See the Notes
PB4 ECRSDV/ERXDV) TIOA5 @ See the Notes
PB5 ERX0 ® TIOB5 @ See the Notes
PB6 ERX1 ® PWML4 @ See the Notes
PB7 ERXER @ PWML5 @ See the Notes
PBS8 EMDC @ PWML6G @ See the Notes
PB9 EMDIO & PWML7 @ See the Notes
PB10 UOTGVBOF A18
PB11 UOTGID A19
PB12 TWD1 PWMHO ADS8
PB13 TWCK1 PWMH1 AD9
PB14 CANTX1 PWMH2
PB15 CANRX1 PWMH3 DACO/WKUP12
PB16 TCLK5 PWMLO DAC1
PB17 RF PWML1 AD10
PB18 RD PWML2 AD11
PB19 RK PWML3 AD12
PB20 TXD2 SPIO_NPCS1 AD13
PB21 RXD2 SPIO_NPCS2 AD14/WKUP13
PB22 RTS2 PCKO
PB23 CTS2 SPIO_NPCS3 WKUP14
PB24 SCK2 NCS2
PB25 RTSO TIOAO
PB26 CTSO TCLKO WKUP15
PB27 NCS3 TIOBO
PB28 TCK/SWCLK TCK after reset
PB29 TDI TDI after reset
PB30 TDO/TRACESWO TDO after reset
PB31 TMS/SWDIO TMS after reset

Notes: 1. SAM3X only
2. SAM3A only

ATMEL 2

11057B-ATARM-28-May-12

ATMEL

11.3.3 P10 Controller C Multiplexing

Table 11-4. Multiplexing on PIO Controller C (PIOC)

1/0 Line Peripheral A Peripheral B Extra Function Comments

PCO ERASE

PC1 144 and 217 pins
PC2 DO PWMLO 144 and 217 pins
PC3 D1 PWMHO 144 and 217 pins
PC4 D2 PWML1 144 and 217 pins
PC5 D3 PWMH1 144 and 217 pins
PC6 D4 PWML2 144 and 217 pins
PC7 D5 PWMH2 144 and 217 pins
PC8 D6 PWML3 144 and 217 pins
PC9 D7 PWMH3 144 and 217 pins
PC10 D8 ECRS 144 and 217 pins
PC11 D9 ERX2 144 and 217 pins
PC12 D10 ERX3 144 and 217 pins
PC13 D11 ECOL 144 and 217 pins
PC14 D12 ERXCK 144 and 217 pins
PC15 D13 ETX2 144 and 217 pins
PC16 D14 ETX3 144 and 217 pins
PC17 D15 ETXER 144 and 217 pins
PC18 NWRO/NWE PWMH6 144 and 217 pins
PC19 NANDOE PWMH5 144 and 217 pins
PC20 NANDWE PWMH4 144 and 217 pins
PC21 AO0/NBSO PWML4 144 and 217 pins
PC22 Al PWMLS 144 and 217 pins
PC23 A2 PWML6 144 and 217 pins
PC24 A3 PWML7 144 and 217 pins
PC25 A4 TIOAG6 144 and 217 pins
PC26 A5 TIOB6 144 and 217 pins
PC27 A6 TCLK6 144 and 217 pins
PC28 A7 TIOA7 144 and 217 pins
PC29 A8 TIOB7 144 and 217 pins
PC30 A9 TCLK7 144 and 217 pins

52 SAMIX/ A ————————

11057B-ATARM-28-May-12

. S A\ V3 X/A

11.34 P10 Controller D Multiplexing

Table 11-5. Multiplexing on PIO Controller D (PIOD)

1/0 Line Peripheral A Peripheral B Extra Function Comments
PDO Al10 MCDA4 144 and 217 pins
PD1 All MCDAS5 144 and 217 pins
PD2 Al12 MCDA6 144 and 217 pins
PD3 A13 MCDA7 144 and 217 pins
PD4 Al4 TXD3 144 and 217 pins
PD5 Al5 RXD3 144 and 217 pins
PD6 A16/BA0 PWMFI2 144 and 217 pins
PD7 Al17/BAl TIOA8 144 and 217 pins
PD8 A21/NANDALE TIOB8 144 and 217 pins
PD9 A22/NANDCLE TCLK8 144 and 217 pins
PD10 NWR1/NBS1 144 and 217 pins
PD11 SDA10 217 pins
PD12 SDCS 217 pins
PD13 SDCKE 217 pins
PD14 SDWE 217 pins
PD15 RAS 217 pins
PD16 CAS 217 pins
PD17 A5 217 pins
PD18 A6 217 pins
PD19 A7 217 pins
PD20 A8 217 pins
PD21 A9 217 pins
PD22 A10 217 pins
PD23 All 217 pins
PD24 Al2 217 pins
PD25 A13 217 pins
PD26 Al4 217 pins
PD27 Al5 217 pins
PD28 A16/BA0 217 pins
PD29 Al17/BA1 217 pins
PD30 Al8 217 pins

ATMEL 5

11057B-ATARM-28-May-12

ATMEL

11.35 P10 Controller E Multiplexing

Table 11-6. Multiplexing on PIO Controller E (PIOE)

I/O Line Peripheral A Peripheral B Extra Function Comments
PEO Al19 217 pins
PE1 A20 217 pins
PE2 A21/NANDALE 217 pins
PE3 A22/NANDCLE 217 pins
PE4 A23 217 pins
PE5 NCS4 217 pins
PEG6 NCS5 217 pins
PE7 217 pins
PE8 217 pins
PE9 TIOA3 217 pins
PE10 TIOB3 217 pins
PE11 TIOA4 217 pins
PE12 TIOB4 217 pins
PE13 TIOAS 217 pins
PE14 TIOB5 217 pins
PE15 PWMHO 217 pins
PE16 PWMH1 SCK3 217 pins
PE17 PWML2 217 pins
PE18 PWMLO NCS6 217 pins
PE19 PWML4 217 pins
PE20 PWMH4 MCCDB 217 pins
PE21 PWML5 217 pins
PE22 PWMHS5 MCDBO 217 pins
PE23 PWML6 217 pins
PE24 PWMH6 MCDB1 217 pins
PE25 PWML7 217 pins
PE26 PWMH7 MCDB2 217 pins
PE27 NCS7 MCDB3 217 pins
PE28 SPI1_MISO 217 pins
PE29 SPI1_MOSI 217 pins
PE30 SPI1_SPCK 217 pins
PE31 SPI1L_NPCSO0 217 pins

54 SAMIX/ A ————————

11057B-ATARM-28-May-12

. S A\ V3 X/A

11.3.6 P10 Controller F Multiplexing

Table 11-7. Multiplexing on PIO Controller F (PIOF)
I/O Line Peripheral A Peripheral B Extra Function Comments
PFO SPI1_NPCS1 217 pins
PF1 SPI1_NPCS2 217 pins
PF2 SPI1_NPCS3 217 pins
PF3 PWMHS3 217 pins
PF4 CTS3 217 pins
PF5 RTS3 217 pins

11057B-ATARM-28-May-12

ATMEL

55

ATMEL

56 S A M B X A ————

s S A VI3 X/A

12. ARM Cortex® M3 Processor

12.1 About this section

This section provides the information required for application and system-level software devel-
opment. It does not provide information on debug components, features, or operation.

This material is for microcontroller software and hardware engineers, including those who have
no experience of ARM products.

Note: The information in this section is reproduced from source material provided to Atmel by
ARM Ltd. in terms of Atmel’s license for the ARM Cortex-M3 processor core. This information
is copyright ARM Ltd., 2008 - 2009.

12.2 Embedded Characteristics

* Version 2.0
e Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16-bit and 32-bit.
» Harvard processor architecture enabling simultaneous instruction fetch with data load/store.
» Three-stage pipeline.
* Single cycle 32-bit multiply.
» Hardware divide.
e Thumb and Debug states.
» Handler and Thread modes.
* Low latency ISR entry and exit.
» SysTick Timer

— 24-bit down counter

— Self-reload capability

— Flexible system timer
* Nested Vectored Interrupt Controller

— Thirty maskable interrupts

— Sixteen priority levels

— Dynamic reprioritization of interrupts

— Priority grouping

selection of preempting interrupt levels and non preempting interrupt levels.

— Support for tail-chaining and late arrival of interrupts.
back-to-back interrupt processing without the overhead of state saving and
restoration between interrupts.

— Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead.

12.3 About the Cortex-M3 processor and core peripherals

11057B-ATARM-28-May-12

» The Cortex-M3 processor is a high performance 32-bit processor designed for the
microcontroller market. It offers significant benefits to developers, including:

« outstanding processing performance combined with fast interrupt handling
» enhanced system debug with extensive breakpoint and trace capabilities

ATMEL s

ATMEL

« efficient processor core, system and memories
« ultra-low power consumption with integrated sleep modes
« platform security, with integrated memory protection unit (MPU).

Figure 12-1. Typical Cortex-M3 implementation

Cortex-M3
Processor

NVIC <€+ Processor
Core

Debug Memory Serial
%» . . i
< Access Protection Unit _N|re >
Port X K Viewer
Flash Data

Patch Watchpoints

vy

Bus Matrix
Code SRAM and
Interface Peripheral Interface
: '

The Cortex-M3 processor is built on a high-performance processor core, with a 3-stage pipeline
Harvard architecture, making it ideal for demanding embedded applications. The processor
delivers exceptional power efficiency through an efficient instruction set and extensively opti-
mized design, providing high-end processing hardware including single-cycle 32x32
multiplication and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M3 processor implements tightly-
coupled system components that reduce processor area while significantly improving interrupt
handling and system debug capabilities. The Cortex-M3 processor implements a version of the
Thumb® instruction set, ensuring high code density and reduced program memory requirements.
The Cortex-M3 instruction set provides the exceptional performance expected of a modern 32-
bit architecture, with the high code density of 8-bit and 16-bit microcontrollers.

The Cortex-M3 processor closely integrates a configurable nested interrupt controller (NVIC), to
deliver industry-leading interrupt performance. The NVIC provides up to 16 interrupt priority lev-
els. The tight integration of the processor core and NVIC provides fast execution of interrupt
service routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the
hardware stacking of registers, and the ability to suspend load-multiple and store-multiple opera-
tions. Interrupt handlers do not require any assembler stubs, removing any code overhead from
the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from
one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep
sleep function that enables the entire device to be rapidly powered down.

58 S A M X A ——— e —

s S A VI3 X/A

12.3.1 System level interface

The Cortex-M3 processor provides multiple interfaces using AMBA® technology to provide high
speed, low latency memory accesses. It supports unaligned data accesses and implements
atomic bit manipulation that enables faster peripheral controls, system spinlocks and thread-safe
Boolean data handling.

The Cortex-M3 processor has a memory protection unit (MPU) that provides fine grain memory
control, enabling applications to implement security privilege levels, separating code, data and
stack on a task-by-task basis. Such requirements are becoming critical in many embedded
applications.

12.3.2 Integrated configurable debug

The Cortex-M3 processor implements a complete hardware debug solution. This provides high
system visibility of the processor and memory through either a traditional JTAG port or a 2-pin
Serial Wire Debug (SWD) port that is ideal for microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside
data watchpoints and a profiling unit. To enable simple and cost-effective profiling of the system
events these generate, a Serial Wire Viewer (SWV) can export a stream of software-generated
messages, data trace, and profiling information through a single pin.

12.3.3 Cortex-M3 processor features and benefits summary

« tight integration of system peripherals reduces area and development costs

« Thumb instruction set combines high code density with 32-bit performance

« code-patch ability for ROM system updates

 power control optimization of system components

* integrated sleep modes for low power consumption

« fast code execution permits slower processor clock or increases sleep mode time
* hardware division and fast multiplier

« deterministic, high-performance interrupt handling for time-critical applications

« memory protection unit (MPU) for safety-critical applications

* extensive debug and trace capabilities:

— Serial Wire Debug and Serial Wire Trace reduce the number of pins required for
debugging and tracing.

12.3.4 Cortex-M3 core peripherals

These are:

12.3.4.1 Nested Vectored Interrupt Controller

The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that sup-
ports low latency interrupt processing.

12.3.4.2 System control block

11057B-ATARM-28-May-12

The System control block (SCB) is the programmers model interface to the processor. It pro-
vides system implementation information and system control, including configuration, control,
and reporting of system exceptions.

ATMEL s

12.3.4.3

12.3.4.4

ATMEL

System timer
The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating Sys-
tem (RTOS) tick timer or as a simple counter.

Memory protection unit
The Memory protection unit (MPU) improves system reliability by defining the memory attributes
for different memory regions. It provides up to eight different regions, and an optional predefined
background region.

12.4 Programmers model

1241

12411

12.41.2

12.4.1.3

124.1.4

12.4.2

60

This section describes the Cortex-M3 programmers model. In addition to the individual core reg-
ister descriptions, it contains information about the processor modes and privilege levels for
software execution and stacks.

Processor mode and privilege levels for software execution

The processor modes are:

Thread mode
Used to execute application software. The processor enters Thread mode when it comes out of
reset.

Handler mode
Used to handle exceptions. The processor returns to Thread mode when it has finished excep-
tion processing.

The privilege levels for software execution are:

Unprivileged
The software:
* has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
 cannot access the system timer, NVIC, or system control block
* might have restricted access to memory or peripherals.
Unprivileged software executes at the unprivileged level.

Privileged

The software can use all the instructions and has access to all resources.
Privileged software executes at the privileged level.
In Thread mode, the CONTROL register controls whether software execution is privileged or
unprivileged, see “CONTROL register” on page 69. In Handler mode, software execution is
always privileged.
Only privileged software can write to the CONTROL register to change the privilege level for
software execution in Thread mode. Unprivileged software can use the SVC instruction to make
a supervisor call to transfer control to privileged software.

Stacks

The processor uses a full descending stack. This means the stack pointer indicates the last
stacked item on the stack memory. When the processor pushes a new item onto the stack, it

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

decrements the stack pointer and then writes the item to the new memory location. The proces-
sor implements two stacks, the main stack and the process stack, with independent copies of
the stack pointer, see “Stack Pointer” on page 62.

In Thread mode, the CONTROL register controls whether the processor uses the main stack or
the process stack, see “CONTROL register” on page 69. In Handler mode, the processor always
uses the main stack. The options for processor operations are:

Table 12-1. Summary of processor mode, execution privilege level, and stack use options

Processor Used to Privilege level for
mode execute software execution Stack used
— Privileged or Main stack or process
Thread Applications unprivileged @ stack®
Exception o .
Handler handlers Always privileged Main stack
1. See “CONTROL register” on page 69.
12.4.3 Core registers
The processor core registers are:
e N
RO
R1
R2
R3
Low registers
R4
R5
R6 General-purpose registers
R7
>_
R8
R9
High registers R10
R11
R12
N— —
Stack Pointer SP (R13) | pPSpP* ” MSP* *Banked version of SP
Link Register LR (R14)
Program Counter PC (R15)
PSR Program status register
PRIMASK
FAULTMASK Exception mask registers Special registers
BASEPRI
CONTROL CONTROL register

11057B-ATARM-28-May-12

ATMEL o

ATMEL

Table 12-2. Core register set summary
Required
Type privilege Reset
Name @ @ value Description
R0O-R12 RW Either Unknown “General-purpose registers” on page 62
. See “ . "
MSP RW Privileged - Stack Pointer” on page 62
description
PSP RW Either Unknown “Stack Pointer” on page 62
LR RW Either OXFFFFFFFF | “Link Register” on page 62
. See “ "
PC RW Either . Program Counter” on page 63
description
PSR RW Privileged | 0x01000000 “Program Status Register” on page 63
ASPR RW Either 0x00000000 Application Program Status Register” on
page 64
IPSR RO Privileged | 0x00000000 6Igterrupt Program Status Register” on page
EPSR RO Privileged | 0x01000000 6szecutlon Program Status Register” on page
PRIMASK RW Privileged | 0x00000000 “Priority Mask Register” on page 67
FAULTMASK | RW Privileged | 0x00000000 “Fault Mask Register” on page 67
BASEPRI RW Privileged | 0x00000000 “Base Priority Mask Register” on page 68
CONTROL RW Privileged | 0x00000000 “CONTROL register” on page 69
1. Describes access type during program execution in thread mode and Handler mode. Debug
access can differ.
2. An entry of Either means privileged and unprivileged software can access the register.
12.4.3.1 General-purpose registers
R0O-R12 are 32-bit general-purpose registers for data operations.
12.4.3.2 Stack Pointer
The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indi-
cates the stack pointer to use:
» 0 = Main Stack Pointer (MSP). This is the reset value.
» 1 = Process Stack Pointer (PSP).
On reset, the processor loads the MSP with the value from address 0x00000000.
12.4.3.3 Link Register
The Link Register (LR) is register R14. It stores the return information for subroutines, function
calls, and exceptions. On reset, the processor loads the LR value OXFFFFFFFF.

11057B-ATARM-28-May-12

s S A VI3 X/A

12.4.3.4 Program Counter
The Program Counter (PC) is register R15. It contains the current program address. Bit[0] is
always 0 because instruction fetches must be halfword aligned. On reset, the processor loads
the PC with the value of the reset vector, which is at address 0x00000004.
12.4.3.5 Program Status Register
The Program Status Register (PSR) combines:
« Application Program Status Register (APSR)
« Interrupt Program Status Register (IPSR)
 Execution Program Status Register (EPSR).
These registers are mutually exclusive bitfields in the 32-bit PSR. The bit assignments are:
* APSR:
31 30 29 28 27 26 25 24
| N | z C Vv | Q Reserved |
23 22 21 20 19 18 17 16
| Reserved |
15 14 13 12 11 10 9 8
| Reserved |
7 6 5 4 3 2 1 0
| Reserved |
* IPSR:
31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| Reserved |
15 14 13 12 11 10 9 8
| Reserved |SR_NUMBER |
7 6 5 4 3 2 1 0
| ISR_NUMBER |
+ EPSR
31 30 29 28 27 26 25 24
| Reserved ICIIT T |
23 22 21 20 19 18 17 16
| Reserved |
15 14 13 12 11 10 9 8
| ICIIT Reserved |
7 6 5 4 3 2 1 0
| Reserved |

11057B-ATARM-28-May-12

ATMEL

63

ATMEL

The PSR bit assignments are:

31 30 29 28 27 26 25 24

| N z | c | v | Q | ICINT T |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| ICIIT Reserved | ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

Access these registers individually or as a combination of any two or all three registers, using
the register name as an argument to the MSR or MRS instructions. For example:

« read all of the registers using PSR with the MRS instruction
 write to the APSR using APSR with the MSR instruction.
The PSR combinations and attributes are:

Table 12-3. PSR register combinations

Register | Type Combination
PSR RW®: @ | APSR, EPSR, and IPSR
IEPSR RO EPSR and IPSR
IAPSR Rw® APSR and IPSR
EAPSR | RW® APSR and EPSR
1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the proces-

sor ignores writes to the these bits.

See the instruction descriptions “MRS” on page 151 and “MSR” on page 152 for more informa-
tion about how to access the program status registers.

12.4.3.6 Application Program Status Register
The APSR contains the current state of the condition flags from previous instruction executions.
See the register summary in Table 12-2 on page 62 for its attributes. The bit assignments are:

* N

Negative or less than flag:

0 = operation result was positive, zero, greater than, or equal
1 = operation result was negative or less than.

e Z

Zero flag:

0 = operation result was not zero

1 = operation result was zero.

64 S A M X A ——— e —

s S A VI3 X/A

« C
Carry or borrow flag:

0 = add operation did not result in a carry bit or subtract operation resulted in a borrow bit
1 = add operation resulted in a carry bit or subtract operation did not result in a borrow bit.
-V

Overflow flag:

0 = operation did not result in an overflow

1 = operation resulted in an overflow.

* Q

Sticky saturation flag:

0 = indicates that saturation has not occurred since reset or since the bit was last cleared to zero
1 = indicates when an ssAT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRs instruction.

12.4.3.7 Interrupt Program Status Register

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).
See the register summary in Table 12-2 on page 62 for its attributes. The bit assignments are:

* ISR_NUMBER

This is the number of the current exception:
0 = Thread mode

1 = Reserved

2 = NMI

3 = Hard fault

4 = Memory management fault
5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 = SVvcall

12 = Reserved for Debug

13 = Reserved

14 = PendSV
15 = SysTick
16 = IRQO
45 = IRQ29

ATMEL e

11057B-ATARM-28-May-12

ATMEL

see “Exception types” on page 80 for more information.

12.4.3.8 Execution Program Status Register
The EPSR contains the Thumb state bit, and the execution state bits for either the:

« If-Then (IT) instruction

« Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store
multiple instruction.

See the register summary in Table 12-2 on page 62 for the EPSR attributes. The bit assign-
ments are:

e |ICI
Interruptible-continuable instruction bits, see “Interruptible-continuable instructions” on page 66.

 IT
Indicates the execution state bits of the IT instruction, see “IT” on page 142.

e T

Always set to 1.
Attempts to read the EPSR directly through application software using the MSR instruction
always return zero. Attempts to write the EPSR using the MSR instruction in application software

are ignored. Fault handlers can examine EPSR value in the stacked PSR to indicate the opera-
tion that is at fault. See “Exception entry and return” on page 84

12.4.3.9 Interruptible-continuable instructions
When an interrupt occurs during the execution of an LDM or STM instruction, the processor:
« stops the load multiple or store multiple instruction operation temporarily
« stores the next register operand in the multiple operation to EPSR bits[15:12].
After servicing the interrupt, the processor:

« returns to the register pointed to by bits[15:12]
« resumes execution of the multiple load or store instruction.
When the EPSR holds ICI execution state, bits[26:25,11:10] are zero.

12.4.3.10 If-Then block
The If-Then block contains up to four instructions following a 16-bit IT instruction. Each instruc-
tion in the block is conditional. The conditions for the instructions are either all the same, or
some can be the inverse of others. See “IT” on page 142 for more information.

12.4.3.11 Exception mask registers

The exception mask registers disable the handling of exceptions by the processor. Disable
exceptions where they might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruc-
tion to change the value of PRIMASK or FAULTMASK. See “MRS” on page 151, “MSR” on page
152, and “CPS” on page 148 for more information.

66 S A M X A ——— e —

s S A VI3 X/A

12.4.3.12 Priority Mask Register

The PRIMASK register prevents activation of all exceptions with configurable priority. See the
register summary in Table 12-2 on page 62 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved PRIMASK |

+ PRIMASK

0: no effect

1: prevents the activation of all exceptions with configurable priority.

12.4.3.13 Fault Mask Register

The FAULTMASK register prevents activation of all exceptions. See the register summary in
Table 12-2 on page 62 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved FAULTMASK |

« FAULTMASK
0: no effect

1: prevents the activation of all exceptions.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

ATMEL o

11057B-ATARM-28-May-12

ATMEL

12.4.3.14 Base Priority Mask Register

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is
set to a nonzero value, it prevents the activation of all exceptions with same or lower priority
level as the BASEPRI value. See the register summary in Table 12-2 on page 62 for its attri-
butes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| BASEPRI |

+ BASEPRI

Priority mask bits:

0x0000 = no effect

Nonzero = defines the base priority for exception processing.

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this field,
bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” on page 164 for more information. Remember
that higher priority field values correspond to lower exception priorities.

68 S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.4.3.15 CONTROL register
The CONTROL register controls the stack used and the privilege level for software execution
when the processor is in Thread mode. See the register summary in Table 12-2 on page 62 for
its attributes. The bit assignments are:
31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| Reserved |
15 14 13 12 11 10 9 8
| Reserved |
7 6 5 4 3 2 1 0
; Thread Mode
Active Stack o
Reserved Pointer Prl_l\él\llee e

» Active stack pointer
Defines the current stack:

0: MSP is the current stack pointer

1: PSP is the current stack pointer.

In Handler mode this bit reads as zero and ignores writes.
e Thread mode privilege level

Defines the Thread mode privilege level:

0: privileged

1: unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the CON-
TROL register when in Handler mode. The exception entry and return mechanisms update the CONTROL register.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack and the kernel and
exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, use the MSR instruc-
tion to set the Active stack pointer bit to 1, see “MSR” on page 152.

When changing the stack pointer, software must use an ISB instruction immediately after the MSR instruction. This
ensures that instructions after the ISB execute using the new stack pointer. See “ISB” on page 150

ATMEL o

11057B-ATARM-28-May-12

ATMEL

12.4.4 Exceptions and interrupts

12.4.5 Data types

The Cortex-M3 processor supports interrupts and system exceptions. The processor and the
Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception
changes the normal flow of software control. The processor uses handler mode to handle all
exceptions except for reset. See “Exception entry” on page 85 and “Exception return” on page
86 for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller” on
page 157 for more information.

The processor:

« supports the following data types:
— 32-bit words
— 16-bit halfwords
— 8-bit bytes
* supports 64-bit data transfer instructions.

* manages all data memory accesses as little-endian. Instruction memory and Private
Peripheral Bus (PPB) accesses are always little-endian. See “Memory regions, types and
attributes” on page 72 for more information.

12.4.6 The Cortex Microcontroller Software Interface Standard

For a Cortex-M3 microcontroller system, the Cortex Microcontroller Software Interface Standard
(CMSIS) defines:
e a common way to:
— access peripheral registers
— define exception vectors
* the names of:
— the registers of the core peripherals
— the core exception vectors
« a device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cor-
tex-M3 processor. It also includes optional interfaces for middleware components comprising a
TCP/IP stack and a Flash file system.

CMSIS simplifies software development by enabling the reuse of template code and the combi-
nation of CMSIS-compliant software components from various middleware vendors. Software
vendors can expand the CMSIS to include their peripheral definitions and access functions for
those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions
of the CMSIS functions that address the processor core and the core peripherals.

This document uses the register short names defined by the CMSIS. In a few cases these differ
from the architectural short names that might be used in other documents.

70 S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

The following sections give more information about the CMSIS:

» “Power management programming hints” on page 90

« “Intrinsic functions” on page 94

* “The CMSIS mapping of the Cortex-M3 NVIC registers” on page 157
* “NVIC programming hints” on page 168.

12.5 Memory model
This section describes the processor memory map, the behavior of memory accesses, and the
bit-banding features. The processor has a fixed memory map that provides up to 4GB of
addressable memory. The memory map is:

OXFFFFFFFF
Vendor-specific 511MB
memory
0xE0100000
: : OXEOOFFFFF
anatebpu?pheral 1.0MB
0xE0000000
OXDFFFFFFF
External device 1.0GB
0xA0000000
OX9FFFFFFF
Ox43FFFFFF External RAM 1.0GB
32MB Bit band alias
0x60000000
0x42000000 OX5FFFFFFF
Ox400FFFFF . . Peripheral 0.5GB
[1MB Bit band region
0x40000000 0x40000000
Ox23FFFFFF Ox3FFFFFFF
32MB Bit band alias SRAM 0.568
0x20000000
0x2200000 Ox1FFFFFFF
Code 0.5GB
Ox200FFFFF - -
0x20000000. MB_Bitband region | 0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic
operations to bit data, see “Bit-banding” on page 75.

The processor reserves regions of the Private peripheral bus (PPB) address range for core
peripheral registers, see “About the Cortex-M3 peripherals” on page 156.

This memory mapping is generic to ARM Cortex-M3 products. To get the specific memory map-
ping of this product, refer to the Memories section of the datasheet.

ATMEL m

11057B-ATARM-28-May-12

1251

12511

1251.2

125.1.3

12514

12515

12.5.2

72

ATMEL

Memory regions, types and attributes

Normal

Device

The memory map and the programming of the MPU split the memory map into regions. Each
region has a defined memory type, and some regions have additional memory attributes. The
memory type and attributes determine the behavior of accesses to the region.

The memory types are:

The processor can re-order transactions for efficiency, or perform speculative reads.

The processor preserves transaction order relative to other transactions to Device or Strongly-
ordered memory.

Strongly-ordered

Shareable

The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the
memory system can buffer a write to Device memory, but must not buffer a write to Strongly-
ordered memory.

The additional memory attributes include.

For a shareable memory region, the memory system provides data synchronization between
bus masters in a system with multiple bus masters, for example, a processor with a DMA
controller.

Strongly-ordered memory is always shareable.

If multiple bus masters can access a non-shareable memory region, software must ensure data
coherency between the bus masters.

Execute Never (XN)

Means the processor prevents instruction accesses. Any attempt to fetch an instruction from an
XN region causes a memory management fault exception.

Memory system ordering of memory accesses

For most memory accesses caused by explicit memory access instructions, the memory system
does not guarantee that the order in which the accesses complete matches the program order of
the instructions, providing this does not affect the behavior of the instruction sequence. Nor-
mally, if correct program execution depends on two memory accesses completing in program
order, software must insert a memory barrier instruction between the memory access instruc-
tions, see “Software ordering of memory accesses” on page 74.

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

However, the memory system does guarantee some ordering of accesses to Device and
Strongly-ordered memory. For two memory access instructions Al and A2, if A1 occurs before
A2 in program order, the ordering of the memory accesses caused by two instructions is:

i Strongly-

A2 Normal Device access gly

A1 access ordered

Non-shareable| Shareable access
Normal access - - - -
Device access, non-shareable - < - <
Device access, shareable - - < <
Strongly-ordered access - < < <

Where:
- Means that the memory system does not guarantee the ordering of the accesses.

< Means that accesses are observed in program order, that is, Al is always observed before A2.

12.5.3 Behavior of memory accesses
The behavior of accesses to each region in the memory map is:

Table 12-4. Memory access behavior

Address Memory Memory
range region type XN Description
0x00000000- Executable region for program code. You can also put
1) -
OXLFFFFFFF | ©00° Normal data here.
Executable region for data. You can also put code
0x20000000- here.
SRAM Normal® | -
Ox3FFFFFFF This region includes bit band and bit band alias areas,
see Table 12-6 on page 76.
0x40000000- This region includes bit band and bit band alias areas,

Peripheral | Device® | XN

OX5FFFFFFF see Table 12-6 on page 76.

0x60000000- External
OX9FFFFFFF RAM

0xA0000000- | External
OxDFFFFFFF | device

Normal® | - Executable region for data.

Device® | XN | External Device memory

0xE0000000- Eg:/iatheeral Strongly- XN This region includes the NVIC, System timer, and
OXEOOFFFFF Busp ordered® system control block.
0xE0100000- .
(@)
OXEEFEEEEE Reserved Device XN Reserved
1. See “Memory regions, types and attributes” on page 72 for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends
that programs always use the Code region. This is because the processor has separate buses
that enable instruction fetches and data accesses to occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more
information, see “Memory protection unit” on page 199.

ATMEL 7

11057B-ATARM-28-May-12

ATMEL

12.5.3.1 Additional memory access constraints for shared memory

When a system includes shared memory, some memory regions have additional access con-
straints, and some regions are subdivided, as Table 12-5 shows:

Table 12-5. Memory region share ability policies

Address range Memory region Memory type Shareability
0x00000000-
(€] -
OXLFFFFFFF Code Normal
0x20000000-
1) -
OX3FFFFFFF SRAM Normal
0x40000000- . .
@ @ -
OXSEEEEEEE Peripheral Device
0x60000000-
2
OX7FFFFFFF WBWA
External RAM Normal® -
0x80000000-
@)
OX9FFFFFFF wT
0xA0000000-
@
OXBFFFFFFF Shareable
External device Device® -
0xC0000000- Non-
OXDFFFFFFF shareable™
0xE0000000- Private Peripheral Strongly- o) i
OXEOOFFFFF Bus ordered® Shareable
0xE0100000- Vendor-specific Device ® i i
OXFFFFFFFF device®
1. See “Memory regions, types and attributes” on page 72 for more information.
2. The Peripheral and Vendor-specific device regions have no additional access constraints.

1254 Software ordering of memory accesses
The order of instructions in the program flow does not always guarantee the order of the corre-
sponding memory transactions. This is because:
« the processor can reorder some memory accesses to improve efficiency, providing this does
not affect the behavior of the instruction sequence.
« the processor has multiple bus interfaces
* memory or devices in the memory map have different wait states
* some memory accesses are buffered or speculative.

“Memory system ordering of memory accesses” on page 72 describes the cases where the
memory system guarantees the order of memory accesses. Otherwise, if the order of memory
accesses is critical, software must include memory barrier instructions to force that ordering. The
processor provides the following memory barrier instructions:

12541 DMB

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions com-
plete before subsequent memory transactions. See “DMB” on page 149.

74 S A M X A ——— e —

s S A VI3 X/A

12.5.4.2

12543

1255

DSB

ISB

Bit-banding

11057B-ATARM-28-May-12

The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transac-
tions complete before subsequent instructions execute. See “DSB” on page 149.

The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory
transactions is recognizable by subsequent instructions. See “ISB” on page 150.

Use memory barrier instructions in, for example:

* MPU programming:
— Use a DSB instruction to ensure the effect of the MPU takes place immediately at
the end of context switching.

— Use an ISB instruction to ensure the new MPU setting takes effect immediately after
programming the MPU region or regions, if the MPU configuration code was
accessed using a branch or call. If the MPU configuration code is entered using
exception mechanisms, then an ISB instruction is not required.

* Vector table. If the program changes an entry in the vector table, and then enables the
corresponding exception, use a DMB instruction between the operations. This ensures that if
the exception is taken immediately after being enabled the processor uses the new exception
vector.

Self-modifying code. If a program contains self-modifying code, use an ISB instruction
immediately after the code modification in the program. This ensures subsequent instruction
execution uses the updated program.

Memory map switching. If the system contains a memory map switching mechanism, use a
DSB instruction after switching the memory map in the program. This ensures subsequent
instruction execution uses the updated memory map.

Dynamic exception priority change. When an exception priority has to change when the
exception is pending or active, use DSB instructions after the change. This ensures the
change takes effect on completion of the DSB instruction.

Using a semaphore in multi-master system. If the system contains more than one bus
master, for example, if another processor is present in the system, each processor must use
a DMB instruction after any semaphore instructions, to ensure other bus masters see the
memory transactions in the order in which they were executed.

Memory accesses to Strongly-ordered memory, such as the system control block, do not require
the use of DMB instructions.

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region.
The bit-band regions occupy the lowest 1MB of the SRAM and peripheral memory regions.

The memory map has two 32MB alias regions that map to two 1MB bit-band regions:

 accesses to the 32MB SRAM alias region map to the 1MB SRAM bit-band region, as shown
in Table 12-6

ATMEL 7

ATMEL

 accesses to the 32MB peripheral alias region map to the 1MB peripheral bit-band region, as
shown in Table 12-7.

Table 12-6. SRAM memory bit-banding regions

Address Memory
range region Instruction and data accesses
0x20000000- SRAM bit-band Direct accesses to this memory range behr_:lve as SRAM
OX200FFFEF region memory accesses, but this region is also bit addressable
X 9 through bit-band alias.
0x22000000- Data accesses to this region are remapped to bit band
0x23EFEFEF SRAM bit-band alias | region. A write operation is performed as read-modify-write.
X Instruction accesses are not remapped.

Table 12-7. Peripheral memory bit-banding regions

Address Memory
range region Instruction and data accesses

Direct accesses to this memory range behave as peripheral
memory accesses, but this region is also bit addressable
through bit-band alias.

0x40000000- Peripheral bit-band
O0x400FFFFF alias

Data accesses to this region are remapped to bit band
region. A write operation is performed as read-modify-write.
Instruction accesses are not permitted.

0x42000000- Peripheral bit-band
Ox43FFFFFF | region

A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM
or peripheral bit-band region.

The following formula shows how the alias region maps onto the bit-band region:
bit_word_offset = (byte_offset x 32) + (bit_nunber x 4)
bit_word_addr = bit_band_base + bit_word_offset

where:

« Bit_word_offset is the position of the target bit in the bit-band memory region.

« Bit_word_addr is the address of the word in the alias memory region that maps to the
targeted bit.

* Bit_band_base is the starting address of the alias region.
» Byte offset is the number of the byte in the bit-band region that contains the targeted bit.
« Bit_number is the bit position, 0-7, of the targeted bit.
Figure 12-2 shows examples of bit-band mapping between the SRAM bit-band alias region and
the SRAM bit-band region:
» The alias word at 0x23FFFFEO maps to bit[0] of the bit-band byte at 0x200FFFFF:
0x23FFFFEO = 0x22000000 + (OxFFFFF*32) + (0*4).

 The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF:
0x23FFFFFC = 0x22000000 + (OXFFFFF*32) + (7*4).

« The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000:
0x22000000 = 0x22000000 + (0*32) + (0 *4).

» The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000:
0x2200001C = 0x22000000+ (0*32) + (7*4).

76 S A M X A ——— e —

Figure 12-2. Bit-band mapping

32MB alias region

SAM3X/A

| oxe3rrrrFC | oxe3FrFFFs | 0x2sFFFFF4 | 0x23FFFFFO | 0x23FFFFEC | 0x23FFFFES

0x23FFFFE4 | 0x23FFFFEO |

°

°

°

/I 0x2200001C I 0x22000018 0x22000014 0x22000010 | 0x22000 0x22000008 0x22000004 I 0x22000000 I

1MB SRAM bit-band region

\

\7654321076 3

2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 10
[T T 1 T 1
0x200FFFFF 0x200FFFFE \\ L 0x200FFFFD 0x200FFFFC
I — I — I — I —
°
°
°
7 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 7 6 5 4 3 2 1 0
U U U U
0x20000003 0x20000002 0x20000001 0x20000000
I — I — I — I —

12551 Directly accessing an alias region

Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the tar-
geted bit in the bit-band region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit,
and writing a value with bit[0] set to O writes a 0 to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as
writing OxFF. Writing 0x00 has the same effect as writing OxOE.

Reading a word in the alias region:

« 0x00000000 indicates that the targeted bit in the bit-band region is set to zero
* 0x00000001 indicates that the targeted bit in the bit-band region is set to 1

12.55.2 Directly accessing a bit-band region

“Behavior of memory accesses” on page 73 describes the behavior of direct byte, halfword, or
word accesses to the bit-band regions.

12.5.6 Memory endianness

The processor views memory as a linear collection of bytes numbered in ascending order from
zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored
word. or “Little-endian format” describes how words of data are stored in memory.

77

ATMEL

11057B-ATARM-28-May-12

ATMEL

12.5.6.1 Little-endian format
In little-endian format, the processor stores the least significant byte of a word at the lowest-
numbered byte, and the most significant byte at the highest-numbered byte. For example:

Memory Register
7 0
31 2423 1615 87 0
Address A BO Isbyte B3 B2 B1 BO
A+1 B1
A+2(B2

A+3 B3 msbyte

12.5.7 Synchronization primitives
The Cortex-M3 instruction set includes pairs of synchronization primitives. These provide a non-
blocking mechanism that a thread or process can use to obtain exclusive access to a memory
location. Software can use them to perform a guaranteed read-modify-write memory update
sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

125.7.1 A Load-Exclusive instruction
Used to read the value of a memory location, requesting exclusive access to that location.

12.5.7.2 A Store-Exclusive instruction
Used to attempt to write to the same memory location, returning a status bit to a register. If this
bit is:
0: it indicates that the thread or process gained exclusive access to the memory, and the write
succeeds,

1: it indicates that the thread or process did not gain exclusive access to the memory, and no
write is performed,

The pairs of Load-Exclusive and Store-Exclusive instructions are:

« the word instructions LDREX and STREX

« the halfword instructions LDREXH and STREXH

« the byte instructions LDREXB and STREXB.
Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive
instruction.
To perform a guaranteed read-modify-write of a memory location, software must:

* Use a Load-Exclusive instruction to read the value of the location.
« Update the value, as required.

« Use a Store-Exclusive instruction to attempt to write the new value back to the memory
location, and tests the returned status bit. If this bit is:

0: The read-modify-write completed successfully,

78 S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

1: No write was performed. This indicates that the value returned the first step might be out
of date. The software must retry the read-modify-write sequence,

Software can use the synchronization primitives to implement a semaphores as follows:
» Use a Load-Exclusive instruction to read from the semaphore address to check whether the
semaphore is free.

« If the semaphore is free, use a Store-Exclusive to write the claim value to the semaphore
address.

« If the returned status bit from the second step indicates that the Store-Exclusive succeeded
then the software has claimed the semaphore. However, if the Store-Exclusive failed, another
process might have claimed the semaphore after the software performed the first step.

The Cortex-M3 includes an exclusive access monitor, that tags the fact that the processor has
executed a Load-Exclusive instruction. If the processor is part of a multiprocessor system, the
system also globally tags the memory locations addressed by exclusive accesses by each
processor.

The processor removes its exclusive access tag if:

* It executes a CLREX instruction
« It executes a Store-Exclusive instruction, regardless of whether the write succeeds.

« An exception occurs. This means the processor can resolve semaphore conflicts between
different threads.

In a multiprocessor implementation:

« executing a CLREX instruction removes only the local exclusive access tag for the processor

 executing a Store-Exclusive instruction, or an exception. removes the local exclusive access
tags, and all global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX”
on page 112 and “CLREX” on page 114.

12.5.8 Programming hints for the synchronization primitives
ANSI C cannot directly generate the exclusive access instructions. Some C compilers provide
intrinsic functions for generation of these instructions:

Table 12-8. C compiler intrinsic functions for exclusive access instructions

Instruction Intrinsic function

LDREX, LDREXH, or
LDREXB

unsigned int __Idrex(volatile void *ptr)

STREX, STREXH, or

. _ _) -
STREXB int __strex(unsigned int val, volatile void *ptr)

CLREX void __ clrex(void)

The actual exclusive access instruction generated depends on the data type of the pointer
passed to the intrinsic function. For example, the following C code generates the require
LDREXB operation:

__ldrex((volatile char *) OxFF);

ATMEL 7

11057B-ATARM-28-May-12

ATMEL

12.6 Exception model

12.6.1

12.6.1.1

12.6.1.2

12.6.1.3

12.6.1.4

12.6.2

12.6.2.1

12.6.2.2

12.6.2.3

80

Inactive

Pending

Active

This section describes the exception model.

Exception states

Each exception is in one of the following states:

The exception is not active and not pending.

The exception is waiting to be serviced by the processor.

An interrupt request from a peripheral or from software can change the state of the correspond-
ing interrupt to pending.

An exception that is being serviced by the processor but has not completed.

An exception handler can interrupt the execution of another exception handler. In this case both
exceptions are in the active state.

Active and pending

The exception is being serviced by the processor and there is a pending exception from the
same source.

Exception types

Reset

The exception types are:

Reset is invoked on power up or a warm reset. The exception model treats reset as a special
form of exception. When reset is asserted, the operation of the processor stops, potentially at
any point in an instruction. When reset is deasserted, execution restarts from the address pro-
vided by the reset entry in the vector table. Execution restarts as privileged execution in Thread
mode.

Non Maskable Interrupt (NMI)

Hard fault

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is
the highest priority exception other than reset. It is permanently enabled and has a fixed priority
of -2.

NMIls cannot be:

» Masked or prevented from activation by any other exception.
« Preempted by any exception other than Reset.

A hard fault is an exception that occurs because of an error during exception processing, or
because an exception cannot be managed by any other exception mechanism. Hard faults have
a fixed priority of -1, meaning they have higher priority than any exception with configurable
priority.

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.6.2.4 Memory management fault
A memory management fault is an exception that occurs because of a memory protection
related fault. The MPU or the fixed memory protection constraints determines this fault, for both
instruction and data memory transactions. This fault is used to abort instruction accesses to
Execute Never (XN) memory regions, even if the MPU is disabled.
12.6.2.5 Bus fault
A bus fault is an exception that occurs because of a memory related fault for an instruction or
data memory transaction. This might be from an error detected on a bus in the memory system.
12.6.2.6 Usage fault
A usage fault is an exception that occurs because of a fault related to instruction execution. This
includes:
 an undefined instruction
« an illegal unaligned access
« invalid state on instruction execution
* an error on exception return.
The following can cause a usage fault when the core is configured to report them:
 an unaligned address on word and halfword memory access
« division by zero.
12.6.2.7 Svcall
A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS envi-
ronment, applications can use SVC instructions to access OS kernel functions and device
drivers.
12.6.2.8 PendSV
PendSV is an interrupt-driven request for system-level service. In an OS environment, use
PendSV for context switching when no other exception is active.
12.6.2.9 SysTick
A SysTick exception is an exception the system timer generates when it reaches zero. Software
can also generate a SysTick exception. In an OS environment, the processor can use this
exception as system tick.
12.6.2.10 Interrupt (IRQ)
A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software
request. All interrupts are asynchronous to instruction execution. In the system, peripherals use
interrupts to communicate with the processor.
Table 12-9. Properties of the different exception types
IRQ
Exception number(| Exception Vector address
number @ 2 type Priority or offset @ Activation
1 - Reset -3, the highest 0x00000004 Asynchronous
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C -
— ATTEL 81
Y 5

11057B-ATARM-28-May-12

ATMEL

Table 12-9. Properties of the different exception types (Continued)
IRQ
Exception number(| Exception Vector address
number @ 2 type Priority or offset @ Activation
4 -12 Memory Configurable @ | 0x00000010 Synchronous
management fault
5 11 Bus fault Configurable® | 0x00000014 Synchronous when precise,
asynchronous when imprecise
6 -10 Usage fault Configurable® 0x00000018 Synchronous
7-10 - - - Reserved -
11 -5 Svcall Configurable® 0x0000002C Synchronous
12-13 - - - Reserved -
14 2 PendSV Configurable® 0x00000038 Asynchronous
15 -1 SysTick Configurable® 0x0000003C Asynchronous
0 and) 0x00000040 and
®)
16 and above above @ Interrupt (IRQ) Configurable above © Asynchronous
1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions other than

interrupts. The IPSR returns the Exception number, see “Interrupt Program Status Register” on page 65.

2. See “Vector table” on page 83 for more information.
3. See “System Handler Priority Registers” on page 180.
4. See the “Peripheral Identifiers” section of the datasheet.
5. See “Interrupt Priority Registers” on page 164.
6. Increasing in steps of 4.
For an asynchronous exception, other than reset, the processor can execute another instruction
between when the exception is triggered and when the processor enters the exception handler.
Privileged software can disable the exceptions that Table 12-9 on page 81 shows as having con-
figurable priority, see:
« “System Handler Control and State Register” on page 183
« “Interrupt Clear-enable Registers” on page 160.
For more information about hard faults, memory management faults, bus faults, and usage
faults, see “Fault handling” on page 87.
12.6.3 Exception handlers
The processor handles exceptions using:
12.6.3.1 Interrupt Service Routines (ISRs)
Interrupts IRQO to IRQ29 are the exceptions handled by ISRs.
12.6.3.2 Fault handlers
Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the
fault handlers.

11057B-ATARM-28-May-12

s S A VI3 X/A

12.6.3.3 System handlers
NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are han-
dled by system handlers.

12.6.4 Vector table
The vector table contains the reset value of the stack pointer, and the start addresses, also
called exception vectors, for all exception handlers. Figure 12-3 on page 83 shows the order of
the exception vectors in the vector table. The least-significant bit of each vector must be 1, indi-
cating that the exception handler is Thumb code.

Figure 12-3. Vector table

Exception number IRQ number Offset Vector
45 29 IRQ29
0x00B4
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040 -
15 -1 Systick
0x003C
14 -2 PendSV
0x0038
13 Reserved
12 Reserved for Debug
11 -5 SvCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -11 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 Reserved
0x0008
1 Reset
0x0004
Initial SP value

0x0000

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to
the VTOR to relocate the vector table start address to a different memory location, in the range
0x00000080 to Ox3FFFFF80, see “Vector Table Offset Register” on page 175.

ATMEL &

11057B-ATARM-28-May-12

12.6.5

12.6.6

12.6.7

12.6.7.1

84

Preemption

ATMEL

Exception priorities

As Table 12-9 on page 81 shows, all exceptions have an associated priority, with:

« a lower priority value indicating a higher priority
« configurable priorities for all exceptions except Reset, Hard fault.

If software does not configure any priorities, then all exceptions with a configurable priority have
a priority of 0. For information about configuring exception priorities see

 “System Handler Priority Registers” on page 180
« “Interrupt Priority Registers” on page 164.

Configurable priority values are in the range 0-15. This means that the Reset, Hard fault, and
NMI exceptions, with fixed negative priority values, always have higher priority than any other
exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1]
means that IRQ[1] has higher priority than IRQ[O]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1]
is processed before IRQ[O].

If multiple pending exceptions have the same priority, the pending exception with the lowest
exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and
have the same priority, then IRQJO0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a
higher priority exception occurs. If an exception occurs with the same priority as the exception
being handled, the handler is not preempted, irrespective of the exception number. However,
the status of the new interrupt changes to pending.

Interrupt priority grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This
divides each interrupt priority register entry into two fields:

 an upper field that defines the group priority
« a lower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is
executing an interrupt exception handler, another interrupt with the same group priority as the
interrupt being handled does not preempt the handler,

If multiple pending interrupts have the same group priority, the subpriority field determines the
order in which they are processed. If multiple pending interrupts have the same group priority
and subpriority, the interrupt with the lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see
“Application Interrupt and Reset Control Register” on page 176.

Exception entry and return

Descriptions of exception handling use the following terms:

When the processor is executing an exception handler, an exception can preempt the exception
handler if its priority is higher than the priority of the exception being handled. See “Interrupt pri-
ority grouping” on page 84 for more information about preemption by an interrupt.

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.6.7.2

12.6.7.3

12.6.7.4

12.6.7.5

Return

Tail-chaining

Late-arriving

When one exception preempts another, the exceptions are called nested exceptions. See
“Exception entry” on page 85 more information.

This occurs when the exception handler is completed, and:

« there is no pending exception with sufficient priority to be serviced
« the completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the
interrupt occurred. See “Exception return” on page 86 for more information.

This mechanism speeds up exception servicing. On completion of an exception handler, if there
is a pending exception that meets the requirements for exception entry, the stack pop is skipped
and control transfers to the new exception handler.

This mechanism speeds up preemption. If a higher priority exception occurs during state saving
for a previous exception, the processor switches to handle the higher priority exception and initi-
ates the vector fetch for that exception. State saving is not affected by late arrival because the
state saved is the same for both exceptions. Therefore the state saving continues uninterrupted.
The processor can accept a late arriving exception until the first instruction of the exception han-
dler of the original exception enters the execute stage of the processor. On return from the
exception handler of the late-arriving exception, the normal tail-chaining rules apply.

Exception entry

11057B-ATARM-28-May-12

Exception entry occurs when there is a pending exception with sufficient priority and either:

« the processor is in Thread mode

« the new exception is of higher priority than the exception being handled, in which case the
new exception preempts the original exception.

When one exception preempts another, the exceptions are nested.
Sufficient priority means the exception has more priority than any limits set by the mask regis-

ters, see “Exception mask registers” on page 66. An exception with less priority than this is
pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving
exception, the processor pushes information onto the current stack. This operation is referred as
stacking and the structure of eight data words is referred as stack frame. The stack frame con-
tains the following information:

* RO-R3, R12

* Return address

* PSR

* LR.

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame.
Unless stack alignment is disabled, the stack frame is aligned to a double-word address. If the
STKALIGN bit of the Configuration Control Register (CCR) is set to 1, stack align adjustment is
performed during stacking.

ATMEL L

12.6.7.6

86

ATMEL

The stack frame includes the return address. This is the address of the next instruction in the
interrupted program. This value is restored to the PC at exception return so that the interrupted
program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the excep-
tion handler start address from the vector table. When stacking is complete, the processor starts
executing the exception handler. At the same time, the processor writes an EXC_RETURN
value to the LR. This indicates which stack pointer corresponds to the stack frame and what
operation mode the was processor was in before the entry occurred.

If no higher priority exception occurs during exception entry, the processor starts executing the
exception handler and automatically changes the status of the corresponding pending interrupt
to active.

If another higher priority exception occurs during exception entry, the processor starts executing
the exception handler for this exception and does not change the pending status of the earlier
exception. This is the late arrival case.

Exception return

Exception return occurs when the processor is in Handler mode and executes one of the follow-
ing instructions to load the EXC_RETURN value into the PC:

* a POP instruction that includes the PC

 a BX instruction with any register.

e an LDR or LDM instruction with the PC as the destination.

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism
relies on this value to detect when the processor has completed an exception handler. The low-
est four bits of this value provide information on the return stack and processor mode. Table 12-
10 shows the EXC_RETURNJ[3:0] values with a description of the exception return behavior.

The processor sets EXC_RETURN bits[31:4] to oxFFFFFFF. When this value is loaded into the PC
it indicates to the processor that the exception is complete, and the processor initiates the
exception return sequence.

Table 12-10. Exception return behavior

EXC_RETURN[3:0] | Description

bXXX0 Reserved.

Return to Handler mode.
b0001 Exception return gets state from MSP.
Execution uses MSP after return.

b0011 Reserved.
b01X1 Reserved.

Return to Thread mode.
b1001 Exception return gets state from MSP.
Execution uses MSP after return.

Return to Thread mode.
b1101 Exception return gets state from PSP.
Execution uses PSP after return.

b1X11 Reserved.

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.7 Fault handling
Faults are a subset of the exceptions, see “Exception model” on page 80. The following gener-

ate a fault:
— a bus error on:
— an instruction fetch or vector table load
— a data access

« an internally-detected error such as an undefined instruction or an attempt to change state
with a BX instruction

« attempting to execute an instruction from a memory region marked as Non-Executable (XN).
« an MPU fault because of a privilege violation or an attempt to access an unmanaged region.

12.7.1 Fault types
Table 12-11 shows the types of fault, the handler used for the fault, the corresponding fault sta-
tus register, and the register bit that indicates that the fault has occurred. See “Configurable
Fault Status Register” on page 185 for more information about the fault status registers.

Table 12-11. Faults

Fault Handler Bit name Fault status register
Bus error on a vector read VECTTBL “Hard Fault Status
Hard fault ety
Fault escalated to a hard fault FORCED Register” on page 191
MPU mismatch: - -
on instruction access IACCVIOL @
Memory
on data access managem | DACCVIOL Memory Management
ent fault Fault Address Register” on
during exception stacking MSTKERR page 192
during exception unstacking MUNSKERR
Bus error: - -
during exception stacking STKERR
during exception unstacking UNSTKERR
during instruction prefetch Bus fault IBUSERR “Bus Fault Status Register”
. 187
Precise data bus error PRECISERR on page
. IMPRECISER
Imprecise data bus error R
Attempt to access a coprocessor NOCP
Undefined instruction UNDEFINSTR
Attempt to enter an invalid instruction
set state @ Usage INVSTATE “Usage Fault Status
fault Register” on page 189
Invalid EXC_RETURN value INVPC
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO
1. Occurs on an access to an XN region even if the MPU is disabled.
2. Attempting to use an instruction set other than the Thumb instruction set.

ATMEL o

11057B-ATARM-28-May-12

12.7.2

12.7.3

88

ATMEL

Fault escalation and hard faults

All faults exceptions except for hard fault have configurable exception priority, see “System Han-
dler Priority Registers” on page 180. Software can disable execution of the handlers for these
faults, see “System Handler Control and State Register” on page 183.

Usually, the exception priority, together with the values of the exception mask registers, deter-
mines whether the processor enters the fault handler, and whether a fault handler can preempt
another fault handler. as described in “Exception model” on page 80.

In some situations, a fault with configurable priority is treated as a hard fault. This is called prior-
ity escalation, and the fault is described as escalated to hard fault. Escalation to hard fault
occurs when:

« A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard
fault occurs because a fault handler cannot preempt itself because it must have the same
priority as the current priority level.

« A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is
because the handler for the new fault cannot preempt the currently executing fault handler.

< An exception handler causes a fault for which the priority is the same as or lower than the
currently executing exception.
* A fault occurs and the handler for that fault is not enabled.
If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not
escalate to a hard fault. This means that if a corrupted stack causes a fault, the fault handler

executes even though the stack push for the handler failed. The fault handler operates but the
stack contents are corrupted.

Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any
exception other than Reset, NMI, or another hard fault.

Fault status registers and fault address registers

The fault status registers indicate the cause of a fault. For bus faults and memory management
faults, the fault address register indicates the address accessed by the operation that caused
the fault, as shown in Table 12-12.

Table 12-12. Fault status and fault address registers

Status register | Address register

Handler name name Register description

Hard fault HESR) Hard Fault Status Register” on page
191
“Memory Management Fault Status
Register” on page 186

Memory MMFSR MMFAR g pag

management fault “Memory Management Fault Address
Register” on page 192
“Bus Fault Status Register” on page 187

Bus fault BFSR BFAR “Bus Fault Address Register” on page
192

Usage fault UESR) llézage Fault Status Register” on page

S A M X A ——— e —

s S A VI3 X/A

12.7.4 Lockup
The processor enters a lockup state if a hard fault occurs when executing the hard fault han-
dlers. When the processor is in lockup state it does not execute any instructions. The processor
remains in lockup state until:

* it is reset

12.8 Power management
The Cortex-M3 processor sleep modes reduce power consumption:

» Backup Mode
» Wait Mode
« Sleep Mode

The SLEEPDEEP bit of the SCR selects which sleep mode is used, see “System Control Regis-
ter” on page 178. For more information about the behavior of the sleep modes see “Low Power
Modes” in the PMC section of the datasheet.

This section describes the mechanisms for entering sleep mode, and the conditions for waking
up from sleep mode.

12.8.1 Entering sleep mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the
processor. Therefore software must be able to put the processor back into sleep mode after
such an event. A program might have an idle loop to put the processor back to sleep mode.

12.8.1.1 Wait for interrupt
The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the proces-
sor executes a WFI instruction it stops executing instructions and enters sleep mode. See “WFI”
on page 155 for more information.

12.8.1.2 Wait for event
The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an
one-bit event register. When the processor executes a WFE instruction, it checks this register:

« if the register is 0 the processor stops executing instructions and enters sleep mode

« if the register is 1 the processor clears the register to 0 and continues executing instructions
without entering sleep mode.

See “WFE” on page 154 for more information.

12.8.1.3 Sleep-on-exit
If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of
an exception handler it returns to Thread mode and immediately enters sleep mode. Use this
mechanism in applications that only require the processor to run when an exception occurs.

12.8.2 Wakeup from sleep mode
The conditions for the processor to wakeup depend on the mechanism that cause it to enter
sleep mode.

ATMEL L

11057B-ATARM-28-May-12

ATMEL

12.8.2.1 Wakeup from WFI or sleep-on-exit
Normally, the processor wakes up only when it detects an exception with sufficient priority to
cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor
wakes up, and before it executes an interrupt handler. To achieve this set the PRIMASK bit to 1
and the FAULTMASK bit to 0. If an interrupt arrives that is enabled and has a higher priority than
current exception priority, the processor wakes up but does not execute the interrupt handler
until the processor sets PRIMASK to zero. For more information about PRIMASK and FAULT-
MASK see “Exception mask registers” on page 66.

12.8.2.2 Wakeup from WFE
The processor wakes up if:
« it detects an exception with sufficient priority to cause exception entry

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an
event and wakes up the processor, even if the interrupt is disabled or has insufficient priority to
cause exception entry. For more information about the SCR see “System Control Register” on
page 178.

12.8.3 Power management programming hints
ANSI C cannot directly generate the WFI and WFE instructions. The CMSIS provides the follow-
ing intrinsic functions for these instructions:

void _ WFE(void) // Wait for Event
void _ WE(void) // Wait for Interrupt

12.9 Instruction set summary
The processor implements a version of the Thumb instruction set. Table 12-13 lists the sup-
ported instructions.

In Table 12-13:

« angle brackets, <>, enclose alternative forms of the operand
* braces, {}, enclose optional operands
« the Operands column is not exhaustive
* Op2 is a flexible second operand that can be either a register or a constant
¢ most instructions can use an optional condition code suffix.
For more information on the instructions and operands, see the instruction descriptions.

Table 12-13. Cortex-M3 instructions

Mnemonic Operands Brief description Flags Page

ADC, ADCS |{Rd,} Rn, Op2 Add with Carry N,Z,C\V page 116
ADD, ADDS |{Rd,} Rn, Op2 Add N,Z,C,V page 116
ADD, ADDW |{Rd,} Rn, #imm12 Add N,Z,C,V page 116
ADR Rd, label Load PC-relative address - page 103
AND, ANDS |{Rd,} Rn, Op2 Logical AND N,Z,C page 118
ASR, ASRS | Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C page 120

90 SAMIX/ A ——————————

11057B-ATARM-28-May-12

s S A VI3 X/A

11057B-ATARM-28-May-12

Table 12-13. Cortex-M3 instructions (Continued)

Mnemonic Operands Brief description Flags Page

B label Branch - page 139
BFC Rd, #lsb, #width Bit Field Clear - page 135
BFI Rd, Rn, #Isb, #width | Bit Field Insert - page 135
BIC, BICS {Rd} Rn, Op2 Bit Clear N,Z,C page 118
BKPT #imm Breakpoint - page 147
BL label Branch with Link - page 139
BLX Rm Branch indirect with Link - page 139
BX Rm Branch indirect - page 139
CBNZ Rn, label Compare and Branch if Non Zero - page 141
CcBz Rn, label Compare and Branch if Zero - page 141
CLREX - Clear Exclusive - page 114
CLz Rd, Rm Count leading zeros - page 121
CMN, CMNS | Rn, Op2 Compare Negative N,Z,C\V page 122
CMP, CMPS | Rn, Op2 Compare N,Z,C.\V page 122
CPSID iflags ICr:::rrrlggtsProcessor State, Disable i page 148
CPSIE iflags ICr:::rr:SgtsProcessor State, Enable i page 148
DMB - Data Memory Barrier - page 149
DSB - Data Synchronization Barrier - page 149
EOR, EORS [{Rd,} Rn, Op2 Exclusive OR N,Z,C page 118
ISB - Instruction Synchronization Barrier - page 150
IT - If-Then condition block - page 142
LDM Rn{'}, reglist Load Multiple registers, increment after | - page 110
tgmgﬁ Rn{1}, reglist Ik;zz)dreMultiple registers, decrement page 110
tgm;[)’ Rn{!}, reglist Load Multiple registers, increment after | - page 110
LDR Rt, [Rn, #offset] Load Register with word - page 106
LDRB, Rt, [Rn, #offset] Load Register with byte - page 106
LDRBT

LDRD Rt, Rt2, [Rn, #offset] | Load Register with two bytes - page 106
LDREX Rt, [Rn, #offset] Load Register Exclusive - page 106
LDREXB Rt, [Rn] Load Register Exclusive with byte - page 106
LDREXH Rt, [Rn] Load Register Exclusive with halfword | - page 106
LDRH, Rt, [Rn, #offset] Load Register with halfword - page 106
LDRHT

ATMEL

91

92

ATMEL

Table 12-13. Cortex-M3 instructions (Continued)
Mnemonic Operands Brief description Flags Page
tggggT Rt, [Rn, #offset] Load Register with signed byte - page 106
tggg:T Rt, [Rn, #offset] Load Register with signed halfword - page 106
LDRT Rt, [Rn, #offset] Load Register with word - page 106
LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C page 120
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C page 120
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result |- page 129
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result - page 129
MOV, MOVS |Rd, Op2 Move N,Z,C page 123
MOVT Rd, #imm16 Move Top - page 125
MOVW, MOV | Rd, #imm16 Move 16-bit constant N,Z,C page 123
MRS Rd, spec_reg rI\gc;\ilset(:om special register to general | page 151
MSR spec_reg, Rm mg\i/set;‘rrom general register to special N.Z.C.V page 152
MUL, MULS |{Rd,} Rn, Rm Multiply, 32-bit result N,Z page 129
MVN, MVNS |Rd, Op2 Move NOT N,Z,C page 123
NOP - No Operation - page 153
ORN, ORNS |{Rd,} Rn, Op2 Logical OR NOT N,Z,C page 118
ORR, ORRS |{Rd,} Rn, Op2 Logical OR N,Z,C page 118
POP reglist Pop registers from stack - page 111
PUSH reglist Push registers onto stack - page 111
RBIT Rd, Rn Reverse Bits - page 126
REV Rd, Rn Reverse byte order in a word - page 126
REV16 Rd, Rn Reverse byte order in each halfword - page 126
REVSH Rd, Rn Zri\jlzr;i k;))/(tttz:éder in bottom halfword | page 126
ROR, RORS |Rd, Rm, <Rs|#n> Rotate Right N,Z,C page 120
RRX, RRXS |Rd, Rm Rotate Right with Extend N,Z,C page 120
RSB, RSBS |[{Rd,} Rn, Op2 Reverse Subtract N,Z,C,V page 116
SBC, SBCS |{Rd,} Rn, Op2 Subtract with Carry N,Z,C\V page 116
SBFX Rd, Rn, #Isb, #width | Signed Bit Field Extract - page 136
SDIV {Rd,} Rn, Rm Signed Divide - page 131
SEV - Send Event - page 153
SMLAL RdLo, RdHi, Rn, Rm 52922‘11)“,”221‘2,'% ‘r’glfcc“mmate @2x 1 page 130
SMULL RdLo, RdHi, Rn, Rm | Signed Multiply (32 x 32), 64-bit result |- page 130

S A M X A ——— e —

s S A VI3 X/A

11057B-ATARM-28-May-12

Table 12-13. Cortex-M3 instructions (Continued)

Mnemonic Operands Brief description Flags Page
SSAT Rd, #n, Rm {,shift #s} | Signed Saturate Q page 132
ST™M Rn{!}, reglist Store Multiple registers, increment after | - page 110
§¥mg&3\ Rn{1}, reglist E;c;cr:raeMultiple registers, decrement i page 110
§$M:ZD Rn{!}, reglist Store Multiple registers, increment after | - page 110
STR Rt, [Rn, #offset] Store Register word - page 106
§$EET Rt, [Rn, #offset] Store Register byte - page 106
STRD Rt, Rt2, [Rn, #offset] | Store Register two words - page 106
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive - page 112
STREXB Rd, Rt, [Rn] Store Register Exclusive byte - page 112
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword - page 112
§¥E3T Rt, [Rn, #offset] Store Register halfword - page 106
STRT Rt, [Rn, #offset] Store Register word - page 106
SUB, SUBS |{Rd,} Rn, Op2 Subtract N,Z,C.\V page 116
SUB, SUBW |{Rd,} Rn, #imm12 Subtract N,Z,C,V page 116
svC #imm Supervisor Call - page 154
SXTB {Rd,} Rm {,ROR #n} | Sign extend a byte - page 137
SXTH {Rd,} Rm {,ROR #n} | Sign extend a halfword - page 137
TBB [Rn, Rm] Table Branch Byte - page 144
TBH [Rn, Rm, LSL #1] Table Branch Halfword - page 144
TEQ Rn, Op2 Test Equivalence N,Z,C page 127
TST Rn, Op2 Test N,Z,C page 127
UBFX Rd, Rn, #lsb, #width Unsigned Bit Field Extract - page 136
ubDIv {Rd,} Rn, Rm Unsigned Divide - page 131
UMLAL RdLo, RdHi, Rn, Rm é’;si(gggi'\gz;t,i%'i_‘giit“:e@ﬁft“m“'ate - page 130
UMULL RdLo, RdHi, Rn, Rm Ee';zi&”ed Multiply (32 x 32), 64-bit page 130
USAT Rd, #n, Rm {,shift #s} |Unsigned Saturate Q page 132
UXTB {Rd,} Rm {,ROR #n} |Zero extend a byte - page 137
UXTH {Rd,} Rm {,ROR #n} |Zero extend a halfword - page 137
WFE - Wait For Event - page 154
WFI - Wait For Interrupt - page 155

ATMEL

93

ATMEL

12.10 Intrinsic functions
ANSI cannot directly access some Cortex-M3 instructions. This section describes intrinsic func-
tions that can generate these instructions, provided by the CMIS and that might be provided by a
C compiler. If a C compiler does not support an appropriate intrinsic function, you might have to
use inline assembler to access some instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ANSI cannot
directly access:

Table 12-14. CMSIS intrinsic functions to generate some Cortex-M3 instructions

Instruction CMSIS intrinsic function

CPSIE | void __enable_irg(void)

CPSID | void __disable_irg(void)

CPSIEF void __enable_fault_irg(void)

CPSID F void __disable_fault_irg(void)

ISB void __ISB(void)

DSB void __DSB(void)

DMB void ___DMB(void)

REV uint32_t _ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t _ REVSH(uint32_t int value)
RBIT uint32_t __ RBIT(uint32_t int value)
SEV void __SEV(void)

WFE void __ WFE(void)

WFI void __ WFI(void)

The CMSIS also provides a number of functions for accessing the special registers using MRS
and MSR instructions

Table 12-15. CMSIS intrinsic functions to access the special registers

Special register | Access | CMSIS function

Read uint32_t __get_ PRIMASK (void)
PRIMASK

Write void __set PRIMASK (uint32_t value)

Read uint32_t __ get FAULTMASK (void)
FAULTMASK

Write void __set FAULTMASK (uint32_t value)

Read uint32_t __get BASEPRI (void)
BASEPRI

Write void __set BASEPRI (uint32_t value)

Read uint32_t __get. CONTROL (void)
CONTROL

Write void __set CONTROL (uint32_t value)

11057B-ATARM-28-May-12

s S A VI3 X/A

Table 12-15. CMSIS intrinsic functions to access the special registers (Continued)

Special register | Access | CMSIS function

Read uint32_t __get_ MSP (void)
Write void __set MSP (uint32_t TopOfMainStack)
Read uint32_t __get PSP (void)
Write void __set PSP (uint32_t TopOfProcStack)

MSP

PSP

12.11 About the instruction descriptions
The following sections give more information about using the instructions:
 “Operands” on page 95
* “Restrictions when using PC or SP” on page 95
« “Flexible second operand” on page 95

“Shift Operations” on page 97

“Address alignment” on page 99
 “PC-relative expressions” on page 99

“Conditional execution” on page 100

“Instruction width selection” on page 102.

12.11.1 Operands
An instruction operand can be an ARM register, a constant, or another instruction-specific
parameter. Instructions act on the operands and often store the result in a destination register.
When there is a destination register in the instruction, it is usually specified before the operands.

Operands in some instructions are flexible in that they can either be a register or a constant. See
“Flexible second operand” .

12.11.2 Restrictions when using PC or SP
Many instructions have restrictions on whether you can use the Program Counter (PC) or Stack
Pointer (SP) for the operands or destination register. See instruction descriptions for more
information.

Bit[0] of any address you write to the PC with a BX, BLX, LDM, LDR, or POP instruction must be
1 for correct execution, because this bit indicates the required instruction set, and the Cortex-M3
processor only supports Thumb instructions.

12.11.3 Flexible second operand
Many general data processing instructions have a flexible second operand. This is shown as
Operand?2 in the descriptions of the syntax of each instruction.

Operand?2 can be a:

* “Constant”
* “Register with optional shift” on page 96

ATMEL o

11057B-ATARM-28-May-12

ATMEL

12.11.3.1 Constant
You specify an Operand2 constant in the form:
#const ant
where constant can be:
« any constant that can be produced by shifting an 8-bit value left by any number of bits within
a 32-bit word
« any constant of the form Ox00XY00XY
« any constant of the form OxXY00XY00
« any constant of the form OxXYXYXYXY.

In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values.
These are described in the individual instruction descriptions.

When an Operand?2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS,
EORS, BICS, TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is
greater than 255 and can be produced by shifting an 8-bit value. These instructions do not affect
the carry flag if Operand2 is any other constant.

12.11.3.2 Instruction substitution

Your assembler might be able to produce an equivalent instruction in cases where you specify a
constant that is not permitted. For example, an assembler might assemble the instruction CMP
Rd, #OXFFFFFFFE as the equivalent instruction CMN Rd, #0x2.

12.11.3.3 Register with optional shift
You specify an Operand2 register in the form:

Rm{, shift}
where:
Rm is the register holding the data for the second operand.
shift is an optional shift to be applied to Rm. It can be one of:
ASR #n arithmetic shift right n bits, 1 <n <32.
LSL #n logical shift left n bits, 1 <n <31.
LSR #n logical shift right n bits, 1 <n <32.
ROR #n rotate right n bits, 1 <n <31.
RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.
If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used
by the instruction. However, the contents in the register Rm remains unchanged. Specifying a
register with shift also updates the carry flag when used with certain instructions. For information
on the shift operations and how they affect the carry flag, see “Shift Operations”

96 S A M X A ——— e —

s S A VI3 X/A

12.11.4 Shift Operations
Register shift operations move the bits in a register left or right by a specified number of bits, the
shift length. Register shift can be performed:

« directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a
destination register

« during the calculation of Operand2 by the instructions that specify the second operand as a
register with shift, see “Flexible second operand” on page 95. The result is used by the
instruction.

The permitted shift lengths depend on the shift type and the instruction, see the individual
instruction description or “Flexible second operand” on page 95. If the shift length is 0, no shift
occurs. Register shift operations update the carry flag except when the specified shift length is 0.
The following sub-sections describe the various shift operations and how they affect the carry
flag. In these descriptions, Rm is the register containing the value to be shifted, and n is the shift
length.

12.11.4.1 ASR
Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the register
into the left-hand n bits of the result. See Figure 12-4 on page 97.

You can use the ASR #n operation to divide the value in the register Rm by 2", with the result
being rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
shifted out, bit[n-1], of the register Rm.

« If nis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
« If nis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 12-4. ASR #3

31 543210|:|

12.11.4.2 LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0.
See Figure 12-5.

You can use the LSR #n operation to divide the value in the register Rm by 2", if the value is
regarded as an unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
shifted out, bit[n-1], of the register Rm.

« |If n is 32 or more, then all the bits in the result are cleared to 0.

ATMEL o

11057B-ATARM-28-May-12

ATMEL

« If nis 33 or more and the carry flag is updated, it is updated to 0.

Figure 12-5. LSR #3

)
LR/ Flag

- o—

|Aﬂf |A!Af ?
L 1 |

12.11.43 LSL
Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n
places, into the left-hand 32-n bits of the result. And it sets the right-hand n bits of the result to 0.
See Figure 12-6 on page 98.

You can use he LSL #n operation to multiply the value in the register Rm by 2", if the value is
regarded as an unsigned integer or a two’s complement signed integer. Overflow can occur
without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is
updated to the last bit shifted out, bit[32-n], of the register Rm. These instructions do not affect
the carry flag when used with LSL #0.

* If nis 32 or more, then all the bits in the result are cleared to 0.
« If nis 33 or more and the carry flag is updated, it is updated to O.

Figure 12-6. LSL #3

: , 1]
i i 000
v I YV
|:| 31 5(4/3/21|0

Carry 4 4 A 4

Flag ? | ? |

12.11.4.4 ROR
Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places,
into the right-hand 32-n bits of the result. And it moves the right-hand n bits of the register into
the left-hand n bits of the result. See Figure 12-7.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
rotation, bit[n-1], of the register Rm.

« If nis 32, then the value of the result is same as the value in Rm, and if the carry flag is
updated, it is updated to bit[31] of Rm.

* ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

98 S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.11.45

RRX

Figure 12-7. ROR #3

| A A ? | A!A ?

Rotate right with extend moves the bits of the register Rm to the right by one bit. And it copies
the carry flag into bit[31] of the result. See Figure 12-8 on page 99.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of
the register Rm.

Figure 12-8. RRX

Carry
Flag

31|30 110

tuuy.. I

12.11.5 Address alignment

12.11.6

11057B-ATARM-28-May-12

An aligned access is an operation where a word-aligned address is used for a word, dual word,
or multiple word access, or where a halfword-aligned address is used for a halfword access.
Byte accesses are always aligned.

The Cortex-M3 processor supports unaligned access only for the following instructions:

* LDR, LDRT

* LDRH, LDRHT

* LDRSH, LDRSHT
* STR, STRT

* STRH, STRHT

All other load and store instructions generate a usage fault exception if they perform an
unaligned access, and therefore their accesses must be address aligned. For more information
about usage faults see “Fault handling” on page 87.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory
regions might not support unaligned accesses. Therefore, ARM recommends that programmers
ensure that accesses are aligned. To avoid accidental generation of unaligned accesses, use
the UNALIGN_TRP bit in the Configuration and Control Register to trap all unaligned accesses,
see “Configuration and Control Register” on page 179.

PC-relative expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or lit-
eral data. It is represented in the instruction as the PC value plus or minus a numeric offset. The

ATMEL o

ATMEL

assembler calculates the required offset from the label and the address of the current instruc-
tion. If the offset is too big, the assembler produces an error.

 For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current
instruction plus 4 bytes.

« For all other instructions that use labels, the value of the PC is the address of the current
instruction plus 4 bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

* Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus
or minus a number, or an expression of the form [PC, #number].

12.11.7 Conditional execution
Most data processing instructions can optionally update the condition flags in the Application
Program Status Register (APSR) according to the result of the operation, see “Application Pro-
gram Status Register” on page 64. Some instructions update all flags, and some only update a
subset. If a flag is not updated, the original value is preserved. See the instruction descriptions
for the flags they affect.

You can execute an instruction conditionally, based on the condition flags set in another instruc-
tion, either:

« immediately after the instruction that updated the flags

« after any number of intervening instructions that have not updated the flags.
Conditional execution is available by using conditional branches or by adding condition code
suffixes to instructions. See Table 12-16 on page 101 for a list of the suffixes to add to instruc-
tions to make them conditional instructions. The condition code suffix enables the processor to
test a condition based on the flags. If the condition test of a conditional instruction fails, the
instruction:

« does not execute

« does not write any value to its destination register

« does not affect any of the flags

« does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then instruction
block. See “IT” on page 142 for more information and restrictions when using the IT instruction.
Depending on the vendor, the assembler might automatically insert an IT instruction if you have
conditional instructions outside the IT block.

Use the CBZ and CBNZ instructions to compare the value of a register against zero and branch
on the result.

This section describes:

* “The condition flags”
« “Condition code suffixes” .

12.11.7.1 The condition flags
The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to O otherwise.
4 Set to 1 when the result of the operation was zero, cleared to 0 otherwise.
C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

100 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

\% Set to 1 when the operation caused overflow, cleared to 0 otherwise.
For more information about the APSR see “Program Status Register” on page 63.
A carry occurs:

« if the result of an addition is greater than or equal to 232

« if the result of a subtraction is positive or zero

« as the result of an inline barrel shifter operation in a move or logical instruction.
Overflow occurs if the result of an add, subtract, or compare is greater than or equal to 23!, or
less than —231,

Most instructions update the status flags only if the S suffix is specified. See the instruction
descriptions for more information.

12.11.7.2 Condition code suffixes
The instructions that can be conditional have an optional condition code, shown in syntax
descriptions as {cond}. Conditional execution requires a preceding IT instruction. An instruction
with a condition code is only executed if the condition code flags in the APSR meet the specified
condition. Table 12-16 shows the condition codes to use.

You can use conditional execution with the IT instruction to reduce the number of branch instruc-
tions in code.

Table 12-16 also shows the relationship between condition code suffixes and the N, Z, C, and V

flags.
Table 12-16. Condition code suffixes
Suffix Flags Meaning
EQ z=1 Equal
NE Z=0 Not equal
IC—|:§ or c=1 Higher or same, unsigned >
E(CD: or C=0 Lower, unsigned <
Ml N=1 Negative
PL N=0 Positive or zero
VS v=1 Overflow
VC V=0 No overflow
HI C=1landZ=0 Higher, unsigned >
LS C=0or Zz=1 Lower or same, unsigned <
GE N=V Greater than or equal, signed >
LT N!=V Less than, signed <
GT Z=0and N=V Greater than, signed >
LE Z=1landN'! =V | Lessthan or equal, signed <
AL Can have any Alwa_yfs. This is the default when no suffix is
value specified.

AImEl@ 101

11057B-ATARM-28-May-12

ATMEL

12.11.7.3 Absolute value
The example below shows the use of a conditional instruction to find the absolute value of a number. RO = ABS(R1).

MOVS RO, R1 ; RO = Rl, setting flags
I T M ; I T instruction for the negative condition
RSBM RO, R1, #0 ; If negative, RO = -R1

12.11.7.4 Compare and update value
The example below shows the use of conditional instructions to update the value of R4 if the signed values RO is greater
than R1 and R2 is greater than R3.

CcwWP RO, R1 ; Conpare RO and Rl1, setting flags

ITT GT ; I Tinstruction for the two GTI conditions

CWGI R2, R3 ; If '"greater than', conpare R2 and R3, setting flags
MOVGT R4, RS ; If still '"greater than', do R4 = RS

12.11.8 Instruction width selection
There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding
depending on the operands and destination register specified. For some of these instructions,
you can force a specific instruction size by using an instruction width suffix. The .W suffix forces
a 32-bit instruction encoding. The .N suffix forces a 16-bit instruction encoding.

If you specify an instruction width suffix and the assembler cannot generate an instruction
encoding of the requested width, it generates an error.

In some cases it might be necessary to specify the .W suffix, for example if the operand is the
label of an instruction or literal data, as in the case of branch instructions. This is because the
assembler might not automatically generate the right size encoding.

12.11.8.1 Instruction width selection
To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any. The exam-
ple below shows instructions with the instruction width suffix.

BCS. W | abel ; creates a 32-bit instruction even for a short branch

ADDS. WR0O, RO, Rl ; creates a 32-bit instruction even though the sane
; operation can be done by a 16-bit instruction

102 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.12 Memory access instructions

12.12.1

12.12.1.1

12.12.1.2

ADR

Syntax

Operation

11057B-ATARM-28-May-12

Table 12-17 shows the memory access instructions:

Table 12-17. Memory access instructions

Mnemonic Brief description See
ADR Load PC-relative address “ADR” on page 103
CLREX Clear Exclusive “CLREX” on page 114
LDM{mode} Load Multiple registers “LDM and STM” on page 110
Load Register using immediate “LDR and STR, immediate offset” on
LDR{type} offset page 104
LDR{type} Load Register using register offset 1'6%R and STR, register offset” on page
LDR{type}T Load Register with unprivileged LDR and STR, unprivileged” on page
access 107
LDR Load Register using PC-relative “LDR, PC-relative” on page 108
address
LDREX({type} Load Register Exclusive “LDREX and STREX” on page 112
POP Pop registers from stack “PUSH and POP” on page 111
PUSH Push registers onto stack “PUSH and POP” on page 111
STM{mode} Store Multiple registers “LDM and STM” on page 110
Store Register using immediate “LDR and STR, immediate offset” on
STR{type} offset page 104
STR{type} Store Register using register offset 1'6'2R and STR, register offset” on page
STRitype}T Store Register with unprivileged LDR and STR, unprivileged” on page
access 107
STREX{type} Store Register Exclusive “LDREX and STREX” on page 112

Load PC-relative address.

ADR{ cond} Rd, | abel
where:
cond
Rd is the destination register.
label

is an optional condition code, see “Conditional execution” on page 100.

is a PC-relative expression. See “PC-relative expressions” on page 99.

ADR determines the address by adding an immediate value to the PC, and writes the result to
the destination register.

ADR produces position-independent code, because the address is PC-relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure that
bit[0] of the address you generate is set tol for correct execution.

ATMEL

103

ATMEL

Values of label must be within the range of 4095 to +4095 from the address in the PC.

You might have to use the .W suffix to get the maximum offset range or to generate addresses
that are not word-aligned. See “Instruction width selection” on page 102.

12.12.1.3 Restrictions
Rd must not be SP and must not be PC.

12.12.1.4 Condition flags
This instruction does not change the flags.

12.12.1.5 Examples
ADR R1, Text Message ; Wite address value of a location |abelled as
; Text Message to R1

12.12.2 LDR and STR, immediate offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate

offset.
12.12.2.1 Syntax

op{type}{cond} R, [Rn {, #offset}] ; i medi ate of fset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} R, [Rn], #offset ; post-indexed
opD{cond} R, Rt2, [Rn {, #offset}] ; imediate offset, two words
opD{cond} R, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words

where:

op is one of:

LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 100.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 is the additional register to load or store for two-word operations.
104 S A IS X/ /A 000000000 —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.12.2.2

12.12.2.3

12.12.2.4

12.12.2.5

12.12.2.6

11057B-ATARM-28-May-12

Operation
LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

Offset addressing
The offset value is added to or subtracted from the address obtained from the register Rn. The
result is used as the address for the memory access. The register Rn is unaltered. The assem-
bly language syntax for this mode is:

[Rn, #offset]

Pre-indexed addressing
The offset value is added to or subtracted from the address obtained from the register Rn. The
result is used as the address for the memory access and written back into the register Rn. The
assembly language syntax for this mode is:

[Rn, #offset]!

Post-indexed addressing
The address obtained from the register Rn is used as the address for the memory access. The
offset value is added to or subtracted from the address, and written back into the register Rn.
The assembly language syntax for this mode is:

[Rn], #offset
The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can
either be signed or unsigned. See “Address alignment” on page 99.

Table 12-18 shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 12-18. Offset ranges

Instruction type Immediate offset | Pre-indexed Post-indexed
Word, halfword, signed
halfword, byte, or signed 255 to 4095 255 to 255 255 to 255
byte
multiple of 4 inthe | multiple of 4inthe | multiple of 4 in the
Two words range 1020 to range -1020 to range 1020 to
1020 1020 1020

Restrictions
For load instructions:
* Rt can be SP or PC for word loads only
* Rt must be different from Rt2 for two-word loads
* Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.
When Rt is PC in a word load instruction:

« bit[0] of the loaded value must be 1 for correct execution
« a branch occurs to the address created by changing bit[0] of the loaded value to 0
« if the instruction is conditional, it must be the last instruction in the IT block.

AImEl@ 105

For store instructions:

ATMEL

¢ Rt can be SP for word stores only

* Rt must not be PC

* Rn must not be PC

* Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

12.12.2.7 Condition flags
These instructions do not change the flags.

12.12.2.8 Examples
LDR R8, [R10] ; Loads R8 fromthe address in RI10.
LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 froma word
; 960 bytes above the address in R5, and
; increnents R5 by 960.

STR R2, [R9, #const-struc] ; const-struc is an expression eval uating
; to a constant in the range 0-4095.

STRH R3, [R4], #4 ; Store R3 as halfword data into address in
; R4, then increment R4 by 4

LDRD R8, R9, [R3, #0x20] ; Load R8 froma word 32 bytes above the

; address in R3, and load RO froma word 36
; bytes above the address in R3

STRD RO, R1, [R8], #-16 ; Store RO to address in R8, and store Rl to
; a word 4 bytes above the address in RS,
; and then decrenent R8 by 16.

12.12.3 LDR and STR, register offset
Load and Store with register offset.

12.12.3.1 Syntax
op{type}{cond} Rt, [Rn, Rm{, LSL #n}]

where:
op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 100.
Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset.

LSL #n is an optional shift, with n in the range 0 to 3.

106 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.12.3.2 Operation

12.12.3.3 Restrictions

LDR instructions load a register with a value from memory.
STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is
specified by the register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and half-
words can either be signed or unsigned. See “Address alignment” on page 99.

In these instructions:

* Rn must not be PC
* Rm must not be SP and must not be PC
* Rt can be SP only for word loads and word stores
« Rt can be PC only for word loads.
When Rt is PC in a word load instruction:
« hit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address
« if the instruction is conditional, it must be the last instruction in the IT block.

12.12.3.4 Condition flags

12.12.35 Examples

These instructions do not change the flags.

STR RO, [R5, R1] ; Store value of RO into an address equal to

;. sumof R5 and R1

LDRSB RO, [R5, R1, LSL #1] ; Read byte value from an address equal to

; sumof R5 and two tines Rl, sign extended it
; to awrd value and put it in RO

STR RO, [Rl, R2, LSL #2] ; Stores RO to an address equal to sumof Rl

12.12.4 LDR and STR,

12.12.4.1 Syntax

11057B-ATARM-28-May-12

; and four tinmes R2

unprivileged
Load and Store with unprivileged access.

op{type}T{cond} Rt, [Rn {, #offset}] ; immedi ate of fset
where:

op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).

H unsigned halfword, zero extend to 32 bits on loads.

AImEl@ 107

SH

cond
Rt
Rn

offset

12.12.4.2 Operation

ATMEL

signed halfword, sign extend to 32 bits (LDR only).

omit, for word.

is an optional condition code, see “Conditional execution” on page 100.
is the register to load or store.

is the register on which the memory address is based.

is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.

These load and store instructions perform the same function as the memory access instructions
with immediate offset, see “LDR and STR, immediate offset” on page 104. The difference is that
these instructions have only unprivileged access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as nor-
mal memory access instructions with immediate offset.

12.12.4.3 Restrictions

In these instructions:

* Rn must not be PC
* Rt must not be SP and must not be PC.

12.12.4.4 Condition flags

These instructions do not change the flags.

12.12.45 Examples
STRBTEQ R4, [R7]

LDRHT R2, [R2, #8]

12.125 LDR, PC-relative

Conditionally store |east significant byte in
R4 to an address in R7, with unprivil eged access
Load hal fword val ue from an address equal to
sumof R2 and 8 into R2, with unprivileged access

Load register from memory.

12.125.1 Syntax

LDR{type}{cond} Rt, |abel

LDRD{cond} Rt, Rt2, | abel ; Load two words
where:
type is one of:
B unsigned byte, zero extend to 32 bits.
SB signed byte, sign extend to 32 bits.
H unsigned halfword, zero extend to 32 bits.
SH signed halfword, sign extend to 32 bits.
- omit, for word.
cond is an optional condition code, see “Conditional execution” on page 100.
108 SA M S X/ /s ——

11057B-ATARM-28-May-12

s S A VI3 X/A

Rt is the register to load or store.
Rt2 is the second register to load or store.
label is a PC-relative expression. See “PC-relative expressions” on page 99.

12.12.5.2 Operation
LDR loads a register with a value from a PC-relative memory address. The memory address is
specified by a label or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and half-
words can either be signed or unsigned. See “Address alignment” on page 99.

label must be within a limited range of the current instruction. Table 12-19 shows the possible
offsets between label and the PC.

Table 12-19. Offset ranges

Instruction type Offset range

Word, halfword, signed halfword, byte, signed
byte

Two words 020 to 1020

-4095 to 4095

You might have to use the .W suffix to get the maximum offset range. See “Instruction width
selection” on page 102.

12.12.5.3 Restrictions

In these instructions:
* Rt can be SP or PC only for word loads
» Rt2 must not be SP and must not be PC
* Rt must be different from Rt2.

When Rt is PC in a word load instruction:
* bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this

halfword-aligned address

« if the instruction is conditional, it must be the last instruction in the IT block.

12.12.5.4 Condition flags
These instructions do not change the flags.

12.12.55 Examples

LDR RO, LookUpTabl e ; Load RO with a word of data from an address
; labelled as LookUpTabl e
LDRSB R7, |ocal data ; Load a byte value froman address | abelled

; as localdata, sign extend it to a word
; value, and put it in R7

AImEl@ 109

11057B-ATARM-28-May-12

12.12.6

12.12.6.1

12.12.6.2

110

LDM and STM

Syntax

Operation

ATMEL

Load and Store Multiple registers.

op{addr _node}{cond} Rn{!}, reglist
where:

op is one of:
LDM Load Multiple registers.
STM Store Multiple registers.

addr_mode is any one of the following:

IA Increment address After each access. This is the default.

DB Decrement address Before each access.
cond is an optional condition code, see “Conditional execution” on page 100.
Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If I'is present the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It can
contain register ranges. It must be comma separated if it contains more than one register or reg-
ister range, see “Examples” on page 111.

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full
Descending stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending
stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto
Empty Ascending stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending
stacks

LDM instructions load the registers in reglist with word values from memory addresses based on
Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on
Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the
accesses are at 4-byte intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of reg-
isters in reglist. The accesses happens in order of increasing register numbers, with the lowest
numbered register using the lowest memory address and the highest number register using the
highest memory address. If the writeback suffix is specified, the value of Rn + 4 * (n-1) is written
back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at
4-byte intervals ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist.

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.12.6.3 Restrictions

The accesses happen in order of decreasing register numbers, with the highest numbered regis-
ter using the highest memory address and the lowest humber register using the lowest memory
address. If the writeback suffix is specified, the value of Rn - 4 * (n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” on page
111 for details.

In these instructions:

* Rn must not be PC
« reglist must not contain SP
« in any STM instruction, reglist must not contain PC
« in any LDM instruction, reglist must not contain PC if it contains LR
« reglist must not contain Rn if you specify the writeback suffix.
When PC is in reglist in an LDM instruction:
« hit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to
this halfword-aligned address
« if the instruction is conditional, it must be the last instruction in the IT block.

12.12.6.4 Condition flags

12.12.6.5 Examples

These instructions do not change the flags.

LDM R8, { RO, R2, RO} ; LDM A is a synonymfor LDM
STVDB R1!, { R3- R6, R11, R12}

12.12.6.6 Incorrect examples
STM R5!,{R5, R4, RO} ; Value stored for R5 is unpredictable

LDM rR2, {}

; There nust be at |east one register in the |ist

12.12.7 PUSH and POP

12.12.7.1 Syntax

11057B-ATARM-28-May-12

Push registers onto, and pop registers off a full-descending stack.

PUSH{ cond} regli st
POP{cond} regli st

where:
cond is an optional condition code, see “Conditional execution” on page 100.
reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges.

It must be comma separated if it contains more than one register or register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for
the access based on SP, and with the final address for the access written back to the SP. PUSH
and POP are the preferred mnemonics in these cases.

AImEl@ 111

ATMEL

12.12.7.2 Operation
PUSH stores registers on the stack in order of decreasing the register numbers, with the highest
numbered register using the highest memory address and the lowest numbered register using
the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest num-
bered register using the lowest memory address and the highest numbered register using the
highest memory address.

See “LDM and STM” on page 110 for more information.

12.12.7.3 Restrictions
In these instructions:

« reglist must not contain SP

« for the PUSH instruction, reglist must not contain PC

« for the POP instruction, reglist must not contain PC if it contains LR.
When PC is in reglist in a POP instruction:

« bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to
this halfword-aligned address

« if the instruction is conditional, it must be the last instruction in the IT block.

12.12.7.4 Condition flags
These instructions do not change the flags.

12.12.7.5 Examples
PUSH { RO, R4- R7}
PUSH {R2, LR}
POP { RO, R10, PC}

12.12.8 LDREX and STREX
Load and Store Register Exclusive.

12.12.8.1 Syntax
LDREX{cond} Rt, [Rn {, #offset}]

STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{ cond} Rt, [Rn]

STREXB{ cond} Rd, Rt, [Rn]

LDREXH{ cond} Rt, [Rn]

STREXH{ cond} Rd, Rt, [Rn]

where:

cond is an optional condition code, see “Conditional execution” on page 100.
Rd is the destination register for the returned status.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.

112 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.12.8.2 Operation

12.12.8.3 Restrictions

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory
address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a
memory address. The address used in any Store-Exclusive instruction must be the same as the
address in the most recently executed Load-exclusive instruction. The value stored by the Store-
Exclusive instruction must also have the same data size as the value loaded by the preceding
Load-exclusive instruction. This means software must always use a Load-exclusive instruction
and a matching Store-Exclusive instruction to perform a synchronization operation, see “Syn-
chronization primitives” on page 78

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does
not perform the store, it writes 1 to its destination register. If the Store-Exclusive instruction
writes O to the destination register, it is guaranteed that no other process in the system has
accessed the memory location between the Load-exclusive and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-
Exclusive and Store-Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that
used in the preceding Load-Exclusive instruction is unpredictable.

In these instructions:

» do not use PC

* do not use SP for Rd and Rt

« for STREX, Rd must be different from both Rt and Rn

« the value of offset must be a multiple of four in the range 0-1020.

12.12.8.4 Condition flags

12.12.8.5 Examples

These instructions do not change the flags.

MOV R1, #0x1 o Initialize the ‘lock taken’ val ue
try

LDREX RO, [LockAddr] ; Load the | ock val ue

CwWP RO, #0 Is the lock free?

ITT EQ ; ITinstruction for STREXEQ and CMPEQ

STREXEQ RO, R1, [LockAddr] ; Try and claimthe |ock

CVPEQ RO, #0 ; Did this succeed?

; No — try again

BNE try

11057B-ATARM-28-May-12

. Yes — we have the | ock

AImEl@ 113

12.12.9 CLREX
Clear Exclusive.

12.129.1 Syntax

CLREX{ cond}
where:
cond is an optional condition code, see “Conditional execution” on page 100.

12.12.9.2 Operation
Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination
register and fail to perform the store. It is useful in exception handler code to force the failure of
the store exclusive if the exception occurs between a load exclusive instruction and the match-
ing store exclusive instruction in a synchronization operation.

See “Synchronization primitives” on page 78 for more information.

12.12.9.3 Condition flags
These instructions do not change the flags.

12.12.94 Examples
CLREX

114 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.13 General data processing instructions

Table 12-20 shows the data processing instructions:

Table 12-20. Data processing instructions
Mnemonic | Brief description See
ADC Add with Carry “ADD, ADC, SUB, SBC, and RSB” on page 116
ADD Add “ADD, ADC, SUB, SBC, and RSB” on page 116
ADDW Add “ADD, ADC, SUB, SBC, and RSB” on page 116
AND Logical AND “AND, ORR, EOR, BIC, and ORN" on page 118
ASR Arithmetic Shift Right “ASR, LSL, LSR, ROR, and RRX" on page 120
BIC Bit Clear “AND, ORR, EOR, BIC, and ORN" on page 118
CLz Count leading zeros “CLZ" on page 121
CMN Compare Negative “CMP and CMN” on page 122
CMP Compare “CMP and CMN” on page 122
EOR Exclusive OR “AND, ORR, EOR, BIC, and ORN" on page 118
LSL Logical Shift Left “ASR, LSL, LSR, ROR, and RRX" on page 120
LSR Logical Shift Right “ASR, LSL, LSR, ROR, and RRX” on page 120
MOV Move “MQOV and MVN” on page 123
MOVT Move Top “MOVT” on page 125
MOVW Move 16-bit constant “MOV and MVN” on page 123
MVN Move NOT “MOV and MVN” on page 123
ORN Logical OR NOT “AND, ORR, EOR, BIC, and ORN" on page 118
ORR Logical OR “AND, ORR, EOR, BIC, and ORN" on page 118
RBIT Reverse Bits “REV, REV16, REVSH, and RBIT” on page 126
REV Reverse byte order in a word “REV, REV16, REVSH, and RBIT” on page 126
REV16 Reverse byte order in each halfword “REV, REV16, REVSH, and RBIT” on page 126
REVSH Reverse byte order in bottom halfword and sign extend | “REV, REV16, REVSH, and RBIT” on page 126
ROR Rotate Right “ASR, LSL, LSR, ROR, and RRX" on page 120
RRX Rotate Right with Extend “ASR, LSL, LSR, ROR, and RRX" on page 120
RSB Reverse Subtract “ADD, ADC, SUB, SBC, and RSB” on page 116
SBC Subtract with Carry “ADD, ADC, SUB, SBC, and RSB” on page 116
SUB Subtract “ADD, ADC, SUB, SBC, and RSB” on page 116
SUBW Subtract “ADD, ADC, SUB, SBC, and RSB” on page 116
TEQ Test Equivalence “TST and TEQ” on page 127
TST Test “TST and TEQ” on page 127

11057B-ATARM-28-May-12

ATMEL

115

12.13.1

12.13.1.1

12.13.1.2

12.13.1.3

116

ATMEL

ADD, ADC, SUB, SBC, and RSB

Syntax

Operation

Restrictions

Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

op{S}{cond} {Rd,} Rn, Operand2

op{cond} {Rd,} Rn, #i nml2 ; ADD and SUB only
where:
op is one of:
ADD Add.

ADC Add with Carry.
SUB Subtract.

SBC Subtract with Carry.
RSB Reverse Subtract.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 100.

cond is an optional condition code, see “Conditional execution” on page 100.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.
See “Flexible second operand” on page 95 for details of the options.

imm12 is any value in the range 0-4095.

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.
The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is
clear, the result is reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful
because of the wide range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see “Multiword arithmetic examples” on
page 118.

See also “ADR” on page 103.

ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the
SUB syntax that uses the imm12 operand.

In these instructions:

» Operand2 must not be SP and must not be PC

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

* Rd can be SP only in ADD and SUB, and only with the additional restrictions:
— Rn must also be SP
— any shift in Operand2 must be limited to a maximum of 3 bits using LSL
* Rn can be SP only in ADD and SUB
* Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:
— you must not specify the S suffix
— Rm must not be PC and must not be SP
— if the instruction is conditional, it must be the last instruction in the IT block

 with the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and
SUB, and only with the additional restrictions:

— you must not specify the S suffix
— the second operand must be a constant in the range 0 to 4095.

— When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded
to b0O before performing the calculation, making the base address for the calculation
word-aligned.

— If you want to generate the address of an instruction, you have to adjust the constant
based on the value of the PC. ARM recommends that you use the ADR instruction
instead of ADD or SUB with Rn equal to the PC, because your assembler
automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:

« bit[0] of the value written to the PC is ignored
 a branch occurs to the address created by forcing bit[0] of that value to 0.

12.13.1.4 Condition flags
If S is specified, these instructions update the N, Z, C and V flags according to the result.

12.13.1.5 Examples

ADD R2, Rl, R3

SUBS R8, R6, #240 ; Sets the flags on the result

RSB R4, R4, #1280 ; Subtracts contents of R4 from 1280

ADCHI R11, RO, R3 ; Only executed if Cflag set and Z
; flag clear

AImEl@ 117

11057B-ATARM-28-May-12

ATMEL

12.13.1.6 Multiword arithmetic examples

12.13.1.7 64-bit addition
The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit integer con-
tained in RO and R1, and place the result in R4 and R5.

ADDS R4, RO, R2 ; add the |east significant words
ADC R5, R1, R3 ; add the nost significant words with carry

12.13.1.8 96-bit subtraction

Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a 96-bit
integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the result in R6, R9,
and R2.

SUBS R6, R6, RO ; subtract the |east significant words
SBCS R9, R2, R1 ; subtract the mddle words with carry
SBC R2, R8, Ril1 ; subtract the nost significant words with carry

12.13.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

12.13.2.1 Syntax
op{S}{cond} {Rd,} Rn, Operand2

where:
op is one of:
AND logical AND.
ORR logical OR, or bit set.
EOR logical Exclusive OR.
BIC logical AND NOT, or bit clear.
ORN logical OR NOT.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 100.

cond is an optional condition code, see See “Conditional execution” on page 100..

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 95 for
details of the options.

12.13.2.2 Operation
The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations
on the values in Rn and Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand?2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

118 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.13.2.3 Restrictions
Do not use SP and do not use PC.

12.13.2.4 Condition flags
If S is specified, these instructions:

« update the N and Z flags according to the result

« can update the C flag during the calculation of Operand2, see “Flexible second operand” on
page 95

« do not affect the V flag.

12.13.25 Examples
AND RO, R2, #OxFFOO
ORREQ R2, RO, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BI C RO, R1, #O0Oxab
ORN R7, R11l, Rl14, ROR #4
ORNS R7, Rl11, R14, ASR #32

AImEl@ 119

11057B-ATARM-28-May-12

ATMEL

12.13.3 ASR, LSL, LSR, ROR, and RRX

12.13.3.1

12.13.3.2

12.13.3.3

12.13.3.4

120

Syntax

Operation

Restrictions

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with
Extend.

op{S}{cond} Rd, Rm Rs

op{S}{cond} Rd, Rm #n

RRX{ S} {cond} Rd, Rm
where:

op is one of:
ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 100.

Rd is the destination register.

Rm is the register holding the value to be shifted.

Rs is the register holding the shift length to apply to the value in Rm. Only the least

significant byte is used and can be in the range 0 to 255.
n is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
LSL shift length from 0 to 31
LSR shift length from 1 to 32
ROR shift length from 1 to 31.
MOV{SHcond} Rd, Rm is the preferred syntax for LSL{S}{cond} Rd, Rm, #0.

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of
places specified by constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains
unchanged. For details on what result is generated by the different instructions, see “Shift Oper-
ations” on page 97.

Do not use SP and do not use PC.

Condition flags

If S is specified:

« these instructions update the N and Z flags according to the result

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.13.35 Examples

ASR R7,
LSLS Ri,
LSR R4,
ROR R4,
RRX R4,
12,134 CLZ

12.13.4.1 Syntax

R8,
R2,
R5,
R5,
R5

12.13.4.2 Operation

12.13.4.3 Restrictions

« the C flag is updated to the last bit shifted out, except when the shift length is 0, see “Shift
Operations” on page 97.

#9 ; Arithnetic shift right by 9 bits

#3 ; Logical shift left by 3 bits with flag update

#6 ; Logical shift right by 6 bits

R6 ; Rotate right by the value in the bottom byte of R6
; Rotate right with extend

Count Leading Zeros.

CLZ{cond} Rd, Rm

where:

cond is an optional condition code, see “Conditional execution” on page 100.
Rd is the destination register.

Rm is the operand register.

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result
in Rd. The result value is 32 if no bits are set in the source register, and zero if bit[31] is set.

Do not use SP and do not use PC.

12.13.4.4 Condition flags

12.13.45 Examples
CLz R4, RO
CLZNE R2, R3

11057B-ATARM-28-May-12

This instruction does not change the flags.

AImEl@ 121

12.13.5 CMP and CMN
Compare and Compare Negative.

12.13.5.1 Syntax
CWP{cond} Rn, Operand2

CWMN{cond} Rn, Operand2

where:
cond is an optional condition code, see “Conditional execution” on page 100.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 95 for
details of the options.

12.13.5.2 Operation
These instructions compare the value in a register with Operand2. They update the condition
flags on the result, but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as
a SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an
ADDS instruction, except that the result is discarded.

12.13.5.3 Restrictions
In these instructions:

« do not use PC
* Operand2 must not be SP.

12.13.54 Condition flags
These instructions update the N, Z, C and V flags according to the result.

12.13.55 Examples
CwP R2, RO
CWN RO, #6400
CVPGT SP, R7, LSL #2

122 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.13.6

12.13.6.1

12.13.6.2

12.13.6.3

MOV and MVN

Syntax

Operation

Restrictions

11057B-ATARM-28-May-12

Move and Move NOT.

MOV{ S} {cond} Rd, Operand2

MWV{cond} Rd, #i mi6

MN{ S} {cond} Rd, Operand2
where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 100.

cond is an optional condition code, see “Conditional execution” on page 100.
Rd is the destination register.

Operand2 is a flexible second operand. See “Flexible second operand” on page 95 for
details of the options.

imm216 is any value in the range 0-65535.

The MOV instruction copies the value of Operand2 into Rd.

When Operand?2 in a MOV instruction is a register with a shift other than LSL #0, the preferred
syntax is the corresponding shift instruction:
* ASR{S}Hcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n
* LSL{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}cond} Rd, Rm, LSL #nifn!=0
* LSR{SKcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n
* ROR{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n
* RRX{SHcond} Rd, Rm is the preferred syntax for MOV{S}{cond} Rd, Rm, RRX.
Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift
instructions:
« MOV{SHcond} Rd, Rm, ASR Rs is a synonym for ASR{S}cond} Rd, Rm, Rs
* MOV{SHKcond} Rd, Rm, LSL Rs is a synonym for LSL{SHcond} Rd, Rm, Rs
* MOV{SHcond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs
« MOV{SHcond} Rd, Rm, ROR Rs is a synonym for ROR{SHcond} Rd, Rm, Rs
See “ASR, LSL, LSR, ROR, and RRX" on page 120.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on
the value, and places the result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16
operand.

You can use SP and PC only in the MOV instruction, with the following restrictions:

« the second operand must be a register without shift
 you must not specify the S suffix.
When Rd is PC in a MOV instruction:

AImEl@ 123

ATMEL

« bit[0] of the value written to the PC is ignored
« a branch occurs to the address created by forcing bit[0] of that value to 0.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of
a BX or BLX instruction to branch for software portability to the ARM instruction set.

12.13.6.4 Condition flags
If S is specified, these instructions:
« update the N and Z flags according to the result

 can update the C flag during the calculation of Operand2, see “Flexible second operand” on
page 95
« do not affect the V flag.

12.13.6.5 Example

MOVS R11, #0x000B ; Wite value of 0x000B to R11, flags get updated
MOV R1, #O0xFAO05 ; Wite value of OxFAO5 to R1, flags are not updated
MOVS R10, R12 ; Wite value in R12 to R10, flags get updated

MOV R3, #23 ;. Wite value of 23 to R3

MOV R8, SP ; Wite value of stack pointer to R8

MNS R2, #OxF ; Wite value of OxFFFFFFFO (bitwi se inverse of OxF)

; to the R2 and update fl ags

124 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.13.7 MOVT

12.13.7.1 Syntax

12.13.7.2 Operation

12.13.7.3 Restrictions

Move Top.

MOVT{cond} Rd, #i mil6

where:

cond is an optional condition code, see “Conditional execution” on page 100.
Rd is the destination register.

imm16 is a 16-bit immediate constant.

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination
register. The write does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32-bit constant.

Rd must not be SP and must not be PC.

12.13.7.4 Condition flags

12.13.7.5 Examples

This instruction does not change the flags.

MOVT R3, #0xF123 ; Wite OxF123 to upper hal fword of R3, |ower hal fword

11057B-ATARM-28-May-12

; and APSR are unchanged

AImEl@ 125

12.13.8 REV, REV16, REVSH, and RBIT

12.13.8.1 Syntax

12.13.8.2 Operation

12.13.8.3 Restrictions

Reverse bytes and Reverse bits.

op{cond} Rd, Rn
where:

op is any of:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.

cond is an optional condition code, see “Conditional execution” on page 100.
Rd is the destination register.
Rn is the register holding the operand.

Use these instructions to change endianness of data:

REV converts 32-bit big-endian data into little-endian data or 32-bit little-endian data
into big-endian data.

REV16 converts 16-bit big-endian data into little-endian data or 16-bit little-endian data
into big-endian data.

REVSH converts either:
16-bit signed big-endian data into 32-bit signed little-endian data
16-bit signed little-endian data into 32-bit signed big-endian data.

Do not use SP and do not use PC.

12.13.8.4 Condition flags

12.13.8.5 Examples

These instructions do not change the flags.

REV R3, R7 ; Reverse byte order of value in R7 and wite it to R3
REV16 RO, RO ; Reverse byte order of each 16-bit halfword in RO
REVSH R0, R5 ; Reverse Signed Hal fword
REVHS R3, R7 ; Reverse with H gher or Same condition
RBI T R7, R8 ; Reverse bit order of value in R8 and wite the result to R7
126 SAM3X/A .|

11057B-ATARM-28-May-12

s S A VI3 X/A

12.13.9 TST and TEQ
Test bits and Test Equivalence.

12.13.9.1 Syntax
TST{cond} Rn, Operand2

TEQ cond} Rn, Operand2

where:
cond is an optional condition code, see “Conditional execution” on page 100.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 95 for
details of the options.

12.13.9.2 Operation

These instructions test the value in a register against Operand2. They update the condition flags
based on the result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of
Operand?2. This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has
that bit set to 1 and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value
of Operand2. This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.
TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical
Exclusive OR of the sign bits of the two operands.

12.13.9.3 Restrictions
Do not use SP and do not use PC.

12.13.9.4 Condition flags
These instructions:
« update the N and Z flags according to the result

 can update the C flag during the calculation of Operand2, see “Flexible second operand” on
page 95

« do not affect the V flag.

12.13.95 Examples

TST RO, #O0x3F8 ; Performbitwi se AND of RO value to Ox3F8,
; APSR is updated but result is discarded
TEQEQ R10, RO ; Conditionally test if value in R1O is equal to

; value in R9, APSR is updated but result is discarded

AImEl@ 127

11057B-ATARM-28-May-12

ATMEL

12.14 Multiply and divide instructions
Table 12-21 shows the multiply and divide instructions:

Table 12-21. Multiply and divide instructions

Mnemonic | Brief description See

MLA Multiply with Accumulate, 32-bit result | “MUL, MLA, and MLS” on page 129

MLS Multiply and Subtract, 32-bit result “MUL, MLA, and MLS"” on page 129

MUL Multiply, 32-bit result “MUL, MLA, and MLS” on page 129

SDIV Signed Divide “SDIV and UDIV” on page 131

SMLAL Signed Multiply with Accumulate “UMULL, UMLAL, SMULL, and SMLAL" on
(32x32+64), 64-bit result page 130

SMULL | Signed Multiply (32x32), 64-bitresult |~ oLL: UMLAL, SMULL, and SMLAL" on

page 130

ubDIv Unsigned Divide “SDIV and UDIV” on page 131

UMLAL Unsigned Multiply with Accumulate “UMULL, UMLAL, SMULL, and SMLAL" on
(32x32+64), 64-bit result page 130
Unsigned Multiply (32x32), 64-bit “UMULL, UMLAL, SMULL, and SMLAL" on

UMULL
result page 130

128 SA M SX/A |

11057B-ATARM-28-May-12

s S A VI3 X/A

12.14.1 MUL, MLA, and MLS

12.14.1.1 Syntax

12.14.1.2 Operation

12.14.1.3 Restrictions

Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and pro-
ducing a 32-bit result.

MUL{S}{cond} {Rd,} Rn, Rm; Miltiply
M.A{cond} Rd, Rn, Rm Ra ; Miltiply with accumul ate
M.S{cond} Rd, Rn, Rm Ra ; Miltiply with subtract

where:

cond is an optional condition code, see “Conditional execution” on page 100.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 100.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32
bits of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places
the least significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value
from Ra, and places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or
unsigned.

In these instructions, do not use SP and do not use PC.
If you use the S suffix with the MUL instruction:

* Rd, Rn, and Rm must all be in the range RO to R7
* Rd must be the same as Rm
« you must not use the cond suffix.

12.14.1.4 Condition flags

12.14.1.5 Examples

If S is specified, the MUL instruction:

 updates the N and Z flags according to the result
* does not affect the C and V flags.

MUL R10, R2, R5 ; Miltiply, RIO = R2 x R5

M.A R10, R2, Rl, R5 ; Multiply with accunulate, R1I0 = (R2 x Rl) + R5
MULS RO, R2, R2 ; Miltiply with flag update, RO = R2 x R2

MULLT R2, R3, R2 ; Conditionally multiply, RR = R3 x R2

M.S R4, R5, R6, R7 ; Miltiply with subtract, R4 = R7 - (R5 x R6)

11057B-ATARM-28-May-12

AImEl@ 129

ATMEL

12.14.2 UMULL, UMLAL, SMULL, and SMLAL
Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and pro-
ducing a 64-bit result.

12.14.2.1 Syntax
op{cond} RdLo, RdH , Rn, Rm

where:
op is one of:
UMULL Unsigned Long Multiply.
UMLAL Unsigned Long Multiply, with Accumulate.
SMULL Signed Long Multiply.
SMLAL Signed Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional execution” on page 100.
RdHi, RdLo are the destination registers.
For UMLAL and SMLAL they also hold the accumulating value.
Rn, Rm are registers holding the operands.
12.14.2.2 Operation
The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies

these integers and places the least significant 32 bits of the result in RdLo, and the most signifi-
cant 32 bits of the result in RdHI.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers, adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo,
and writes the result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed inte-
gers. It multiplies these integers and places the least significant 32 bits of the result in RdLo, and
the most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed inte-
gers. It multiplies these integers, adds the 64-bit result to the 64-bit signed integer contained in
RdHi and RdLo, and writes the result back to RdHi and RdLo.

12.14.2.3 Restrictions
In these instructions:
» do not use SP and do not use PC
* RdHi and RdLo must be different registers.

12.14.2.4 Condition flags
These instructions do not affect the condition code flags.

12.14.2.5 Examples
UMULL RO, R4, R5, R6 ; Unsigned (R4, R0) = R5 x R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5R4) + R3 x R8

130 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.14.3 SDIV and UDIV
Signed Divide and Unsigned Divide.

12.14.3.1 Syntax
SDI V{ cond} {Rd, ,

} Rn, Rm
UDI V{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code, see “Conditional execution” on page 100.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

12.14.3.2 Operation
SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded
towards zero.

12.14.3.3 Restrictions
Do not use SP and do not use PC.

12.14.3.4 Condition flags
These instructions do not change the flags.

12.14.35 Examples
SDIV RO, R2, R4 ; Signed divide, RO = R2/R4
UDIV R8, R8, RL ; Unsigned divide, R8 = R8/RL

AImEl@ 131

11057B-ATARM-28-May-12

ATMEL

12.15 Saturating instructions

12.15.1

12.15.1.1

12.15.1.2

132

This section describes the saturating instructions, SSAT and USAT.

SSAT and USAT

Syntax

Operation

Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

op{cond} Rd, #n, Rm{, shift #s}
where:

op is one of:
SSAT Saturates a signed value to a signed range.

USAT Saturates a signed value to an unsigned range.

cond is an optional condition code, see “Conditional execution” on page 100.
Rd is the destination register.
n specifies the bit position to saturate to:

n ranges from 1 to 32 for SSAT
n ranges from O to 31 for USAT.
Rm is the register containing the value to saturate.
shift #s is an optional shift applied to Rm before saturating. It must be one of the following:
ASR #s where s is in the range 1 to 31
LSL #s where s is in the range 0 to 31.

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range 2"~
T o1y,

The USAT instruction applies the specified shift, then saturates to the unsigned range
0xx<"1.

For signed n-bit saturation using SSAT, this means that:

« if the value to be saturated is less than 2", the result returned is 2"
« if the value to be saturated is greater than 2"*-1, the result returned is 2"41
* otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation using USAT, this means that:

« if the value to be saturated is less than 0, the result returned is 0
« if the value to be saturated is greater than 2", the result returned is 2"4
 otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If satura-
tion occurs, the instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag
unchanged. To clear the Q flag to 0, you must use the MSR instruction, see “MSR” on page 152.

To read the state of the Q flag, use the MRS instruction, see “MRS” on page 151.

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.15.1.3 Restrictions
Do not use SP and do not use PC.

12.15.1.4 Condition flags
These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

12.15.1.5 Examples
SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
; saturate it as a signed 16-bit val ue and
; wite it back to R7
USATNE RO, #7, RS ; Conditionally saturate value in R5 as an
; unsigned 7 bit value and wite it to RO

AImEl@ 133

11057B-ATARM-28-May-12

ATMEL

12.16 Bitfield instructions
Table 12-22 shows the instructions that operate on adjacent sets of bits in registers or bitfields:

Table 12-22. Packing and unpacking instructions

Mnemonic | Brief description See

BFC Bit Field Clear “BFC and BFI” on page 135

BFI Bit Field Insert “BFC and BFI” on page 135

SBFX Signed Bit Field Extract “SBFX and UBFX” on page 136
SXTB Sign extend a byte “SXT and UXT” on page 137

SXTH Sign extend a halfword “SXT and UXT” on page 137

UBFX Unsigned Bit Field Extract “SBFX and UBFX" on page 136
UXTB Zero extend a byte “SXT and UXT” on page 137

UXTH Zero extend a halfword “SXT and UXT” on page 137

134 SATIM S X/ /0 —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.16.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

12.16.1.1 Syntax
BFC{cond} Rd, #lsb, #wi dth

BFI {cond} Rd, Rn, #lsb, #width

where:
cond is an optional condition code, see “Conditional execution” on page 100.
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield.
Isb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 324sb.

12.16.1.2 Operation
BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position Isb.
Other bits in Rd are unchanged.

BFI copies a hitfield into one register from another register. It replaces width bits in Rd starting at
the low bit position Isb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

12.16.1.3 Restrictions
Do not use SP and do not use PC.

12.16.1.4 Condition flags
These instructions do not affect the flags.

12.16.1.5 Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to O
BFI RO, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of RO with
;o bit Oto bit 11 fromR2

AImEl@ 135

11057B-ATARM-28-May-12

ATMEL

12.16.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

12.16.2.1 Syntax
SBFX{ cond} Rd, Rn, #lsb, #wdth

UBFX{cond} Rd, Rn, #lsb, #w dth

where:
cond is an optional condition code, see “Conditional execution” on page 100.
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield.
Isb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 324sb.

12.16.2.2 Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the
destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the
destination register.

12.16.2.3 Restrictions
Do not use SP and do not use PC.

12.16.2.4 Condition flags
These instructions do not affect the flags.

12.16.2.5 Examples
SBFX RO, R1l, #20, #4 ; Extract bit 20 to bit 23 (4 bits) fromRlL and sign
; extend to 32 bits and then wite the result to RO.
UBFX R8, R11l, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from Rl1 and zero
; extend to 32 bits and then wite the result to R8

136 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.16.3 SXT and UXT
Sign extend and Zero extend.

12.16.3.1 Syntax
SXText end{cond} {Rd,} Rm{, ROR #n}

UXText end{cond} {Rd}, Rm{, ROR #n}

where:
extend is one of:
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.
cond is an optional condition code, see “Conditional execution” on page 100.
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:

ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.
12.16.3.2 Operation
These instructions do the following:

* Rotate the value from Rm right by O, 8, 16 or 24 bits.
 Extract bits from the resulting value:
SXTB extracts hits[7:0] and sign extends to 32 bits.

UXTB extracts bits[7:0] and zero extends to 32 bits.
SXTH extracts bits[15:0] and sign extends to 32 bits.
UXTH extracts bits[15:0] and zero extends to 32 bits.

12.16.3.3 Restrictions
Do not use SP and do not use PC.

12.16.3.4 Condition flags
These instructions do not affect the flags.

12.16.3.5 Examples
SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the | ower
; hal fword of the result and then sign extend to
: 32 bits and wite the result to R4.
UXTB R3, R10 ; Extract |lowest byte of the value in RLO and zero
; extend it, and wite the result to R3

AImEl@ 137

11057B-ATARM-28-May-12

ATMEL

12.17 Branch and control instructions

138

Table 12-23 shows the branch and control instructions:

Table 12-23.

Branch and control instructions

Mnemonic

Brief description

See

B

Branch

“B, BL, BX, and BLX” on page 139

BL

Branch with Link

“B, BL, BX, and BLX” on page 139

BLX

Branch indirect with Link

“B, BL, BX, and BLX” on page 139

BX

Branch indirect

“B, BL, BX, and BLX” on page 139

CBNZz

Compare and Branch if Non Zero

“CBZ and CBNZ” on page 141

CBz

Compare and Branch if Non Zero

“CBZ and CBNZ” on page 141

If-Then

“IT” on page 142

TBB

Table Branch Byte

“TBB and TBH" on page 144

TBH

Table Branch Halfword

“TBB and TBH” on page 144

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.17.1 B, BL, BX, and BLX
Branch instructions.

12.17.1.1 Syntax

B{ cond} | abel
BL{cond} | abel
BX{cond} Rm
BLX{ cond} Rm
where:
B is branch (immediate).
BL is branch with link (immediate).
BX is branch indirect (register).
BLX is branch indirect with link (register).
cond is an optional condition code, see “Conditional execution” on page 100.
label is a PC-relative expression. See “PC-relative expressions” on page 99.
Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm must

be 1, but the address to branch to is created by changing bit[0] to O.

12.17.1.2 Operation
All these instructions cause a branch to label, or to the address indicated in Rm. In addition:

« The BL and BLX instructions write the address of the next instruction to LR (the link register,
R14).
» The BX and BLX instructions cause a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All
other branch instructions must be conditional inside an IT block, and must be unconditional out-
side the IT block, see “IT” on page 142.

Table 12-24 shows the ranges for the various branch instructions.

Table 12-24. Branch ranges

Instruction Branch range

B label 16 MB to +16 MB

Bcond label (outside IT block) -1 MB to +1 MB

Bcond label (inside IT block) 16 MB to +16 MB
BL{cond} label 16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

You might have to use the .W suffix to get the maximum branch range. See “Instruction width
selection” on page 102.

12.17.1.3 Restrictions
The restrictions are:

AImEl@ 139

11057B-ATARM-28-May-12

12.17.1.4

12.17.1.5 Examples

140

B | oopA
BLE ng

B. W target
BEQ target
BEQ W target

BL funC
BX LR
BXNE RO
BLX RO

Condition flags
These instructions do not change the flags.

ATMEL

» do not use PC in the BLX instruction
« for BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target

address created by changing bit[0] to 0

» when any of these instructions is inside an IT block, it must be the last instruction of the IT

block.

Bcond is the only conditional instruction that is not required to be inside an IT block. However, it
has a longer branch range when it is inside an IT block.

Branch to | oopA

Conditionally branch to | abel ng

Branch to target within 16MB range

Conditionally branch to target

Conditionally branch to target within 1MB

Branch with link (Call) to function funC, return address
stored in LR

Return from function call

Conditionally branch to address stored in RO

Branch with |Iink and exchange (Call) to a address stored
in RO

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.17.2 CBZand CBNZ
Compare and Branch on Zero, Compare and Branch on Non-Zero.

12.17.2.1 Syntax
CBZ Rn, | abel

CBNZ Rn, | abel

where:
Rn is the register holding the operand.
label is the branch destination.

12.17.2.2 Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the
number of instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CcwP Rn, #0
BEQ | abel
CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CwP Rn, #0
BNE | abel

12.17.2.3 Restrictions
The restrictions are:

* Rn must be in the range of RO to R7

« the branch destination must be within 4 to 130 bytes after the instruction
« these instructions must not be used inside an IT block.

12.17.2.4 Condition flags
These instructions do not change the flags.

12.17.25 Examples
CcBzZ R5, target ; Forward branch if R5 is zero
CBNZ RO, target ; Forward branch if RO is not zero

AImEl@ 141

11057B-ATARM-28-May-12

12.17.3

12.17.3.1

12.17.3.2

12.17.3.3

142

IT

Syntax

Operation

Restrictions

If-Then condition instruction.

| T{x{y{z}}} cond

where:

X specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.

Z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.

E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of
the instructions in the IT block must be unconditional, and each of x, y, and z must be T or omit-
ted but not E.

The IT instruction makes up to four following instructions conditional. The conditions can be all
the same, or some of them can be the logical inverse of the others. The conditional instructions
following the IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the {cond}
part of their syntax.

Your assembler might be able to generate the required IT instructions for conditional instructions
automatically, so that you do not need to write them yourself. See your assembler documenta-
tion for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an
IT block. Such an exception results in entry to the appropriate exception handler, with suitable
return information in LR and stacked PSR.

Instructions designed for use for exception returns can be used as normal to return from the
exception, and execution of the IT block resumes correctly. This is the only way that a PC-modi-
fying instruction is permitted to branch to an instruction in an IT block.

The following instructions are not permitted in an IT block:
o IT
« CBZ and CBNZ
e CPSID and CPSIE.

Other restrictions when using an IT block are:

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

« a branch or any instruction that modifies the PC must either be outside an IT block or must be
the last instruction inside the IT block. These are:

— ADD PC, PC, Rm

— MOV PC, Rm

- B, BL, BX, BLX

— any LDM, LDR, or POP instruction that writes to the PC
— TBB and TBH

« do not branch to any instruction inside an IT block, except when returning from an exception
handler

« all conditional instructions except Bcond must be inside an IT block. Bcond can be either
outside or inside an IT block but has a larger branch range if it is inside one

« each instruction inside the IT block must specify a condition code suffix that is either the
same or logical inverse as for the other instructions in the block.

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the
use of assembler directives within them.

12.17.3.4 Condition flags

12.17.35 Example

| TTE
ANDNE
ADDSNE
MOVEQ

CwWP

I TE
ADDGT
ADDLE

T
ADDGT

| TTEE
MOVEQ
ADDEQ
ANDNE
BNE. W

T
ADD

NE

RO, RO,
R2, Rz,
R2, R3
RO, #9
Gr

R1, RO,
R1, RO,
Gr

R1, R1,
EQ

RO, R1
R2, Rz,
R3, RS,
dl oop
NE

RO, RO,

11057B-ATARM-28-May-12

This instruction does not change the flags.

; Next 3 instructions are conditional
R1 ; ANDNE does not update condition flags
#1 ; ADDSNE updates condition flags

; Conditional nove

; Convert RO hex value (0 to 15) into ASCl I
; ("0 -9, TA-TFY)
; Next 2 instructions are conditional

#55 ; Convert OxA ->'A

#48 ; Convert 0Ox0 -> 'O

; I T block with only one conditional instruction
#1 ; Increnent R1 conditionally

; Next 4 instructions are conditional
; Conditional nove
#10 ; Conditional add
#1 ; Conditional AND
; Branch instruction can only be used in the | ast
;instruction of an I T bl ock

; Next instruction is conditional
R1 ; Syntax error: no condition code used in |IT block

AImEl@ 143

ATMEL

12.17.4 TBB and TBH
Table Branch Byte and Table Branch Halfword.

12.17.4.1 Syntax
TBB [Rn, Rnj

TBH [R, Rm LSL #1]
where:

Rn is the register containing the address of the table of branch lengths. If Rn is PC,
then the address of the table is the address of the byte immediately following the TBB or TBH
instruction.

Rm is the index register. This contains an index into the table. For halfword tables,
LSL #1 doubles the value in Rm to form the right offset into the table.

12.17.4.2 Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for
TBB, or halfword offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index
into the table. For TBB the branch offset is twice the unsigned value of the byte returned from
the table. and for TBH the branch offset is twice the unsigned value of the halfword returned
from the table. The branch occurs to the address at that offset from the address of the byte
immediately after the TBB or TBH instruction.

12.17.4.3 Restrictions
The restrictions are:
* Rn must not be SP
* Rm must not be SP and must not be PC

« when any of these instructions is used inside an IT block, it must be the last instruction of the
IT block.

12.17.4.4 Condition flags
These instructions do not change the flags.

144 SA M SXI A L __|
11057B-ATARM-28-May-12

s S A VI3 X/A

12.17.45 Examples
ADR. W RO, BranchTabl e_Byte
TBB [RO, R1] ; RLis the index, RO is the base address of the
; branch table

Casel
; an instruction sequence follows
Case?2
; an instruction sequence foll ows
Case3

; an instruction sequence follows
BranchTabl e_Byte

DCB 0 ; Casel of fset cal cul ation
DCB ((Case2-Casel)/2) ; Case2 offset calculation
DCB ((Case3-Casel)/2) ; Case3 offset calculation
TBH [PC, Rl, LSL #1] ; RLis the index, PCis used as base of the

; branch table
BranchTabl e_H

DCl ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
DCl ((CaseB - BranchTable_H)/2) ; CaseB offset cal culation
DCl ((CaseC - BranchTable_H)/2) ; CaseC offset calculation

CaseA

; an instruction sequence follows

CaseB

; an instruction sequence foll ows

CaseC

; an instruction sequence follows

AImEl@ 145

11057B-ATARM-28-May-12

ATMEL

12.18 Miscellaneous instructions
Table 12-25 shows the remaining Cortex-M3 instructions:

Table 12-25. Miscellaneous instructions

Mnemonic | Brief description See
BKPT Breakpoint “BKPT” on page 147
CPSID Change Processor State, Disable “CPS’ on page 148
Interrupts
CPSIE Change Processor State, Enable “CPS” on page 148
Interrupts
DMB Data Memory Barrier “DMB” on page 149
DSB Data Synchronization Barrier “DSB” on page 149
ISB Instruction Synchronization Barrier “ISB” on page 150
MRS Move from special register to register “MRS” on page 151
MSR Move from register to special register “MSR” on page 152
NOP No Operation “NOP” on page 153
SEV Send Event “SEV” on page 153
svC Supervisor Call “SVC” on page 154
WFE Wait For Event “WFE” on page 154
WFI Wait For Interrupt “WFI” on page 155

146 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.18.1 BKPT

12.18.1.1 Syntax

12.18.1.2 Operation

Breakpoint.
BKPT #i nm
where:
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to
investigate system state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional informa-
tion about the breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaf-
fected by the condition specified by the IT instruction.

12.18.1.3 Condition flags

12.18.1.4 Examples

BKPT OxAB

11057B-ATARM-28-May-12

This instruction does not change the flags.

Breakpoint with i medi ate value set to OxAB (debugger can
extract the immediate value by locating it using the PC

AImEl@ 147

Y)
12.18.2 CPS
Change Processor State.

12.18.2.1 Syntax
CPSeffect iflags

where:
effect is one of:
IE Clears the special purpose register.
ID Sets the special purpose register.
iflags is a sequence of one or more flags:
i Set or clear PRIMASK.
f Set or clear FAULTMASK.

12.18.2.2 Operation
CPS changes the PRIMASK and FAULTMASK special register values. See “Exception mask
registers” on page 66 for more information about these registers.

12.18.2.3 Restrictions
The restrictions are:

« use CPS only from privileged software, it has no effect if used in unprivileged software
« CPS cannot be conditional and so must not be used inside an IT block.

12.18.2.4 Condition flags
This instruction does not change the condition flags.

12.18.2.5 Examples

CPSIDi ; Disable interrupts and configurable fault handlers (set PRI MASK)
CPSIDf ; Disable interrupts and all fault handlers (set FAULTMASK)

CPSIE i ; Enable interrupts and configurable fault handl ers (clear PRI MASK)
CPSIE f ; Enable interrupts and fault handlers (clear FAULTMASK)

148 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.18.3 DMB
Data Memory Barrier.

12.18.3.1 Syntax
DMVB{ cond}

where:

cond is an optional condition code, see “Conditional execution” on page 100.

12.18.3.2 Operation
DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in
program order, before the DMB instruction are completed before any explicit memory accesses
that appear, in program order, after the DMB instruction. DMB does not affect the ordering or
execution of instructions that do not access memory.

12.18.3.3 Condition flags
This instruction does not change the flags.

12.18.34 Examples
DVMB ; Data Menory Barrier

12.18.4 DSB
Data Synchronization Barrier.

12.18.4.1 Syntax
DSB{ cond}

where:

cond is an optional condition code, see “Conditional execution” on page 100.

12.18.4.2 Operation
DSB acts as a special data synchronization memory barrier. Instructions that come after the
DSB, in program order, do not execute until the DSB instruction completes. The DSB instruction
completes when all explicit memory accesses before it complete.

12.18.4.3 Condition flags
This instruction does not change the flags.

12.18.4.4 Examples
DSB ; Data Synchronisation Barrier

AImEl@ 149

11057B-ATARM-28-May-12

12.185 ISB
Instruction Synchronization Barrier.

12.18.5.1 Syntax
| SB{ cond}

where:

cond is an optional condition code, see “Conditional execution” on page 100.

12.18.5.2 Operation
ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that
all instructions following the ISB are fetched from memory again, after the ISB instruction has
been completed.

12.18.5.3 Condition flags
This instruction does not change the flags.

12.185.4 Examples
ISB ; Instruction Synchronisation Barrier

150 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.18.6 MRS

12.18.6.1 Syntax

12.18.6.2 Operation

12.18.6.3 Restrictions

Move the contents of a special register to a general-purpose register.

MRS{cond} Rd, spec_reg

where:
cond is an optional condition code, see “Conditional execution” on page 100.
Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR,
for example to clear the Q flag.

In process swap code, the programmers model state of the process being swapped out must be
saved, including relevant PSR contents. Similarly, the state of the process being swapped in
must also be restored. These operations use MRS in the state-saving instruction sequence and
MSR in the state-restoring instruction sequence.

BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.
See “MSR” on page 152.

Rd must not be SP and must not be PC.

12.18.6.4 Condition flags

12.18.6.5 Examples

This instruction does not change the flags.

MRS RO, PRIMASK ; Read PRI MASK value and wite it to RO

11057B-ATARM-28-May-12

AImEl@ 151

12.18.7

12.18.7.1

12.18.7.2

12.18.7.3

12.18.7.4

12.18.7.5

MSR

Syntax

Operation

Restrictions

ATMEL

Move the contents of a general-purpose register into the specified special register.

MSR{ cond} spec_reg, Rn

where:
cond is an optional condition code, see “Conditional execution” on page 100.
Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

The register access operation in MSR depends on the privilege level. Unprivileged software can
only access the APSR, see “Application Program Status Register” on page 64. Privileged soft-
ware can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.
When you write to BASEPRI_MAX, the instruction writes to BASEPRI only if either:

* Rn is non-zero and the current BASEPRI value is O
* Rn is non-zero and less than the current BASEPRI value.

See “MRS” on page 151.

Rn must not be SP and must not be PC.

Condition flags

Examples

MSR CONTRCOL, R1 ;

152

This instruction updates the flags explicitly based on the value in Rn.

Read R1 value and wite it to the CONTROL register

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.18.8 NOP
No Operation.

12.18.8.1 Syntax
NOP{ cond}

where:
cond is an optional condition code, see “Conditional execution” on page 100.
12.18.8.2 Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might
remove it from the pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.

12.18.8.3 Condition flags
This instruction does not change the flags.

12.18.8.4 Examples
NOP ; No operation

12.189 SEV
Send Event.
12.18.9.1 Syntax
SEV{ cond}
where:
cond is an optional condition code, see “Conditional execution” on page 100.

12.18.9.2 Operation
SEV is a hint instruction that causes an event to be signaled to all processors within a multipro-
cessor system. It also sets the local event register to 1, see “Power management” on page 89.

12.18.9.3 Condition flags
This instruction does not change the flags.

12.18.9.4 Examples
SEV ; Send Event

AImEl@ 153

11057B-ATARM-28-May-12

Y)
12.18.10 SvC
Supervisor Call.

12.18.10.1 Syntax
SVC{ cond} #imm

where:
cond is an optional condition code, see “Conditional execution” on page 100.
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

12.18.10.2 Operation
The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to
determine what service is being requested.

12.18.10.3 Condition flags
This instruction does not change the flags.

12.18.10.4 Examples
SVC 0x32 ; Supervisor Call (SVC handler can extract the inmmedi ate val ue
; by locating it via the stacked PC)

12.18.11 WFE
Wait For Event.

12.18.11.1 Syntax
WFE{ cond}

where:

cond is an optional condition code, see “Conditional execution” on page 100.

12.18.11.2 Operation
WFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:

 an exception, unless masked by the exception mask registers or the current priority level
* an exception enters the Pending state, if SEVONPEND in the System Control Register is set
« a Debug Entry request, if Debug is enabled

« an event signaled by a peripheral or another processor in a multiprocessor system using the
SEV instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.

For more information see “Power management” on page 89.

12.18.11.3 Condition flags
This instruction does not change the flags.

12.18.11.4 Examples
WFE ; Wait for event

154 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.18.12 WFI
Wait for Interrupt.

12.18.12.1 Syntax
WFI { cond}

where:

cond is an optional condition code, see “Conditional execution” on page 100.
12.18.12.2 Operation

WFI is a hint instruction that suspends execution until one of the following events occurs:

* an exception
« a Debug Entry request, regardless of whether Debug is enabled.

12.18.12.3 Condition flags
This instruction does not change the flags.

12.18.12.4 Examples
WFl ; Wit for interrupt

AImEl@ 155

11057B-ATARM-28-May-12

ATMEL

12.19 About the Cortex-M3 peripherals
The address map of the Private peripheral bus (PPB) is:

Table 12-26. Core peripheral register regions

Address Core peripheral Description

gigggggggﬁ System control block Table 12-30 on page 169
giggggggig System timer Table 12-33 on page 194
gigggggig?: CN:gi?re;ngtorEd Interrupt Table 12-27 on page 157
gigggggggg System control block Table 12-30 on page 169
8§E888E89808 Memory protection unit Table 12-35 on page 200
gigggggﬁgg CN:gi?re;ngtorEd Interrupt Table 12-27 on page 157

In register descriptions:

« the register type is described as follows:
RW Read and write.

RO Read-only.
WO Write-only.

« the required privilege gives the privilege level required to access the register, as follows:
Privileged Only privileged software can access the register.

Unprivileged Both unprivileged and privileged software can access the register.

156 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.20 Nested Vectored Interrupt Controller
This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses.
The NVIC supports:
¢ 1 to 30 interrupts.

« A programmable priority level of 0-15 for each interrupt. A higher level corresponds to a lower
priority, so level 0 is the highest interrupt priority.

* Level detection of interrupt signals.

« Dynamic reprioritization of interrupts.

« Grouping of priority values into group priority and subpriority fields.
* Interrupt tail-chaining.

The processor automatically stacks its state on exception entry and unstacks this state on
exception exit, with no instruction overhead. This provides low latency exception handling. The
hardware implementation of the NVIC registers is:

Table 12-27. NVIC register summary

Required Reset

Address Name Type privilege value Description

OXEOOOE100- ISERO- RwW Privileged 0x00000000 “Interrupt Set-enable Registers” on page 159

OXEOOOE104 ISER1

OxEOOOE180- ICERO- RW Privileged 0x00000000 “Interrupt Clear-enable Registers” on page 160

OXEOOOE184 ICER1

0xEOO00E200- ISPRO- RW Privileged 0x00000000 “Interrupt Set-pending Registers” on page 161

OXEOOOE204 ISPR1

0xEOOOE280- ICPRO- RW Privileged 0x00000000 “Interrupt Clear-pending Registers” on page 162

OXEOOOE284 ICPR1

0XEOO0OE300- IABRO- RO Privileged 0x00000000 “Interrupt Active Bit Registers” on page 163

OXEOOOE304 IABR1

OxE000E400- IPRO- RW Privileged 0x00000000 “Interrupt Priority Registers” on page 164

OXEOOOE41C | IPR7 g P yReg Pag

OXEOOOEFO0D STIR WO ((Zl?nflgurable 0x00000000 1S6(€)Sl‘tware Trigger Interrupt Register” on page
1. See the register description for more information.

12.20.1 The CMSIS mapping of the Cortex-M3 NVIC registers

To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the
CMSIS:

« the Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to
arrays of 32-bit integers, so that:
— the array ISER[0] to ISER[1] corresponds to the registers ISERO-ISER1
— the array ICER][0] to ICER[1] corresponds to the registers ICERO-ICER1
— the array ISPR[0] to ISPR[1] corresponds to the registers ISPRO-ISPR1
— the array ICPR[0] to ICPR[1] corresponds to the registers ICPRO-ICPR1
— the array IABR[0] to IABR[1] corresponds to the registers IABRO-IABR1

AImEl@ 157

11057B-ATARM-28-May-12

ATMEL

« the 4-bit fields of the Interrupt Priority Registers map to an array of 4-bit integers, so that the
array IP[0] to IP[29] corresponds to the registers IPRO-IPR7, and the array entry IP[n] holds
the interrupt priority for interrupt n.

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Regis-
ters. For more information see the description of the NVIC_SetPriority function in “NVIC
programming hints” on page 168. Table 12-28 shows how the interrupts, or IRQ numbers, map
onto the interrupt registers and corresponding CMSIS variables that have one bit per interrupt.

Table 12-28. Mapping of interrupts to the interrupt variables

CMSIS array elements

Interrupts | Set-enable | Clear-enable | Set-pending | Clear-pending | Active Bit

0-29 ISERI[0] ICER[O] ISPRI[0] ICPR[0] IABRI[0]
30-63 ISER[1] ICER[1] ISPRI[1] ICPR[1] IABR[1]
1. Each array element corresponds to a single NVIC register, for example the element

ICER[0] corresponds to the ICERO register.

158 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.20.2 Interrupt Set-enable Registers
The ISERO-ISERL register enables interrupts, and show which interrupts are enabled. See:
« the register summary in Table 12-27 on page 157 for the register attributes
» Table 12-28 on page 158 for which interrupts are controlled by each register.
The bit assignments are:

31 30 29 28 27 26 25 24

| SETENA bits |
23 22 21 20 19 18 17 16

| SETENA bits |
15 14 13 12 11 10 9 8

| SETENA bits |
7 6 5 4 3 2 1 0

| SETENA bits |

« SETENA

Interrupt set-enable bits.

Write:

0: no effect

1: enable interrupt.
Read:

0: interrupt disabled
1: interrupt enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled, assert-
ing its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt, regardless of its
priority.

AImEl@ 159

11057B-ATARM-28-May-12

ATMEL

12.20.3 Interrupt Clear-enable Registers
The ICERO-ICERL1 register disables interrupts, and shows which interrupts are enabled. See:

« the register summary in Table 12-27 on page 157 for the register attributes
» Table 12-28 on page 158 for which interrupts are controlled by each register
The bit assignments are:

31 30 29 28 27 26 25 24
| CLRENA

23 22 21 20 19 18 17 16
| CLRENA

15 14 13 12 11 10 9 8
| CLRENA

7 6 5 4 3 2 1 0
| CLRENA
e CLRENA
Interrupt clear-enable bits.
Write:
0: no effect

1: disable interrupt.
Read:
0: interrupt disabled

1: interrupt enabled.

160 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.20.4 Interrupt Set-pending Registers
The ISPRO-ISPRL1 register forces interrupts into the pending state, and shows which interrupts
are pending. See:
« the register summary in Table 12-27 on page 157 for the register attributes
» Table 12-28 on page 158 for which interrupts are controlled by each register.
The bit assignments are:

31 30 29 28 27 26 25 24

| SETPEND |
23 22 21 20 19 18 17 16

| SETPEND |
15 14 13 12 11 10 9 8

| SETPEND |
7 6 5 4 3 2 1 0

| SETPEND |

« SETPEND

Interrupt set-pending bits.

Write:

0: no effect.

1: changes interrupt state to pending.
Read:

0: interrupt is not pending.

1: interrupt is pending.

Writing 1 to the ISPR bit corresponding to:

« an interrupt that is pending has no effect
* a disabled interrupt sets the state of that interrupt to pending

AImEl@ 161

11057B-ATARM-28-May-12

ATMEL

12.20.5 Interrupt Clear-pending Registers
The ICPRO-ICPR1 register removes the pending state from interrupts, and show which inter-
rupts are pending. See:
« the register summary in Table 12-27 on page 157 for the register attributes
» Table 12-28 on page 158 for which interrupts are controlled by each register.
The bit assignments are:
31 30 29 28 27 26 25 24
| CLRPEND |
23 22 21 20 19 18 17 16
| CLRPEND |
15 14 13 12 11 10 9 8
| CLRPEND |
7 6 5 4 3 2 1 0
| CLRPEND |
« CLRPEND
Interrupt clear-pending bits.
Write:
0: no effect.

1: removes pending state an interrupt.

Read:

0: interrupt is not pending.

1: interrupt is pending.

Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

162

S A M X A ——— e —

s S A VI3 X/A

12.20.6 Interrupt Active Bit Registers
The IABRO-IABRL1 register indicates which interrupts are active. See:
« the register summary in Table 12-27 on page 157 for the register attributes
» Table 12-28 on page 158 for which interrupts are controlled by each register.
The bit assignments are:

31 30 29 28 27 26 25 24

| ACTIVE |
23 22 21 20 19 18 17 16

| ACTIVE |
15 14 13 12 11 10 9 8

| ACTIVE |
7 6 5 4 3 2 1 0

| ACTIVE |

« ACTIVE

Interrupt active flags:
0: interrupt not active
1: interrupt active.

A bit reads as one if the status of the corresponding interrupt is active or active and pending.

AImEl@ 163

11057B-ATARM-28-May-12

ATMEL

12.20.7 Interrupt Priority Registers
The IPRO-IPRY registers provide a 4-bit priority field for each interrupt (See the “Peripheral Iden-
tifiers” section of the datasheet for more details). These registers are byte-accessible. See the
register summary in Table 12-27 on page 157 for their attributes. Each register holds four priority
fields, that map up to four elements in the CMSIS interrupt priority array IP[0] to IP[29], as shown:
12.20.7.1 IPRm
31 30 29 28 27 26 25 24
| IP[4m+3]
23 22 21 20 19 18 17 16
| IP[4m+2]
15 14 13 12 11 10 9 8
| IP[4m+1]
7 6 5 4 3 2 1 0
| IP[4m]
12.20.7.2 IPR4
31 30 29 28 27 26 25 24
| IP[19]
23 22 21 20 19 18 17 16
| IP[18]
15 14 13 12 11 10 9 8
| IP[17]
7 6 5 4 3 2 1 0
| IP[16]
12.20.7.3 IPR3
31 30 29 28 27 26 25 24
| IP[15]
23 22 21 20 19 18 17 16
| IP[14]
15 14 13 12 11 10 9 8
| IP[13]
7 6 5 4 3 2 1 0
| IP[12]

164

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.20.7.4 IPR2

31 30 29 28 27 26 25 24

| IP[11] |
23 22 21 20 19 18 17 16

| IP[10] |
15 14 13 12 11 10 9 8

| IP[9] |
7 6 5 4 3 2 1 0

| IP[g] |

12.20.7.5 IPR1

31 30 29 28 27 26 25 24

| IP[7] |
23 22 21 20 19 18 17 16

| IP[6] |
15 14 13 12 11 10 9 8

I IP[5] |
7 6 5 4 3 2 1 0

| IP[4] |

12.20.7.6 IPRO

31 30 29 28 27 26 25 24

I IP[3] |
23 22 21 20 19 18 17 16

| IP[2] |
15 14 13 12 11 10 9 8

| IP[1] |
7 6 5 4 3 2 1 0

| IP[0] |

 Priority, byte offset 3
 Priority, byte offset 2
e Priority, byte offset 1

 Priority, byte offset 0
Each priority field holds a priority value, 0-15. The lower the value, the greater the priority of the corresponding interrupt.
The processor implements only bits[7:4] of each field, bits[3:0] read as zero and ignore writes.

See “The CMSIS mapping of the Cortex-M3 NVIC registers” on page 157 for more information about the IP[0] to IP[29]
interrupt priority array, that provides the software view of the interrupt priorities.

AImEl@ 165

11057B-ATARM-28-May-12

ATMEL

Find the IPR number and byte offset for interrupt N as follows:

» the corresponding IPR number, M, is given by M = N DIV 4

« the byte offset of the required Priority field in this register is N MOD 4, where:

— byte offset 0 refers to register bits[7:0]

— byte offset 1 refers to register bits[15:8]

— byte offset 2 refers to register bits[23:16]

— byte offset 3 refers to register bits[31:24].

12.20.8 Software Trigger Interrupt Register
Write to the STIR to generate a Software Generated Interrupt (SGI). See the register summary
in Table 12-27 on page 157 for the STIR attributes.
When the USERSETMPEND bit in the SCR is set to 1, unprivileged software can access the
STIR, see “System Control Register” on page 178.
Only privileged software can enable unprivileged access to the STIR.
The bit assignments are:
31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| Reserved |
15 14 13 12 11 10 9 8
| Reserved INTID |
7 6 5 4 3 2 1 0
| INTID |
* INTID

Interrupt ID of the required SGlI, in the range 0-239. For example, a value of b000000011 specifies interrupt IRQ3.

166

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.20.9 Level-sensitive interrupts
The processor supports level-sensitive interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. Typ-
ically this happens because the ISR accesses the peripheral, causing it to clear the interrupt
request.

When the processor enters the ISR, it automatically removes the pending state from the inter-
rupt, see “Hardware and software control of interrupts” . For a level-sensitive interrupt, if the
signal is not deasserted before the processor returns from the ISR, the interrupt becomes pend-
ing again, and the processor must execute its ISR again. This means that the peripheral can
hold the interrupt signal asserted until it no longer needs servicing.

12.20.9.1 Hardware and software control of interrupts
The Cortex-M3 latches all interrupts. A peripheral interrupt becomes pending for one of the fol-

lowing reasons:
« the NVIC detects that the interrupt signal is HIGH and the interrupt is not active
« the NVIC detects a rising edge on the interrupt signal

« software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-
pending Registers” on page 161, or to the STIR to make an SGI pending, see “Software
Trigger Interrupt Register” on page 166.

A pending interrupt remains pending until one of the following:

The processor enters the ISR for the interrupt. This changes the state of the interrupt from pend-
ing to active. Then:

— For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC
samples the interrupt signal. If the signal is asserted, the state of the interrupt
changes to pending, which might cause the processor to immediately re-enter the
ISR. Otherwise, the state of the interrupt changes to inactive.

— If the interrupt signal is not pulsed while the processor is in the ISR, when the
processor returns from the ISR the state of the interrupt changes to inactive.

« Software writes to the corresponding interrupt clear-pending register bit.

For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt
does not change. Otherwise, the state of the interrupt changes to inactive.

AImEl@ 167

11057B-ATARM-28-May-12

ATMEL

12.20.10 NVIC design hints and tips
Ensure software uses correctly aligned register accesses. The processor does not support
unaligned accesses to NVIC registers. See the individual register descriptions for the supported
access sizes.

A interrupt can enter pending state even it is disabled.

Before programming VTOR to relocate the vector table, ensure the vector table entries of the
new vector table are setup for fault handlers and all enabled exception like interrupts. For more
information see “Vector Table Offset Register” on page 175.

12.20.10.1 NVIC programming hints
Software uses the CPSIE | and CPSID | instructions to enable and disable interrupts. The
CMSIS provides the following intrinsic functions for these instructions:

void _ disable_irqg(void) // Disable Interrupts
void __enable_irq(void) // Enable Interrupts
In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 12-29. CMSIS functions for NVIC control

CMSIS interrupt control function Description

void NVIC_SetPriorityGrouping(uint32_t

priority._grouping) Set the priority grouping

168

void NVIC_EnablelRQ(IRQn_t IRQn)

Enable IRQn

void NVIC_DisablelIRQ(IRQn_t IRQn)

Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQN)

Return true if IRQn is pending

void NVIC_SetPendinglRQ (IRQn_t IRQnN)

Set IRQn pending

void NVIC_ClearPendingIlRQ (IRQn_t IRQn)

Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQnN)

Return the IRQ number of the active
interrupt

void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority)

Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn)

Read priority of IRQn

void NVIC_SystemReset (void)

Reset the system

For more information about these functions see the CMSIS documentation.

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.21 System control block

The System control block (SCB) provides system implementation information, and system con-
trol. This includes configuration, control, and reporting of the system exceptions. The system
control block registers are:

Table 12-30. Summary of the system control block registers

Required | Reset
Address Name Type privilege value Description
OxEOOOEO008 ACTLR RW Privileged | 0x00000000 “Auxiliary Control Register” on page 170
OxEOOOEDOO CPUID RO Privileged | 0x412FC230 “CPUID Base Register” on page 171
OxEOOOEDO04 ICSR Rw® Privileged | 0x00000000 “Interrupt Control and State Register” on page 172
OxEOOOEDO08 VTOR RW Privileged | 0x00000000 “Vector Table Offset Register” on page 175
OXEOOOEDOC AIRCR RW® Privileged | OXFA050000 1A7[épllcat|0n Interrupt and Reset Control Register” on page
OxEOOOED10 SCR RW Privileged | 0x00000000 “System Control Register” on page 178
OxXEOOOED14 CCR RW Privileged | 0x00000200 “Configuration and Control Register” on page 179
OxEOOOED18 SHPR1 RW Privileged | 0x00000000 “System Handler Priority Register 1” on page 181
OxEOOOED1C SHPR2 RW Privileged | 0x00000000 “System Handler Priority Register 2” on page 182
OxEOOOED20 SHPR3 RW Privileged | 0x00000000 “System Handler Priority Register 3” on page 182
OXEOOOED24 SHCRS RW Privileged | 0x00000000 “System Handler Control and State Register” on page 183
OxEOOOED28 CFSR RW Privileged | 0x00000000 “Configurable Fault Status Register” on page 185
OXEOOOED2S MMSR®@ RW Privileged | 0x00 lI\s/algmory Management Fault Address Register” on page
OXEOOOED29 | BFSR® RW Privileged | 0x00 “Bus Fault Status Register” on page 187
OXEOOOED2A | UFSR® RW Privileged | 0x0000 “Usage Fault Status Register” on page 189
OxXEOOOED2C HFSR RW Privileged | 0x00000000 “Hard Fault Status Register” on page 191
OXEOOOED34 MMAR RW Privileged | Unknown 1I\élgmory Management Fault Address Register” on page
OxEOOOED38 BFAR RW Privileged | Unknown “Bus Fault Address Register” on page 192

Notes: 1. See the register description for more information.
2. A subregister of the CFSR.

12.21.1 The CMSIS mapping of the Cortex-M3 SCB registers
To improve software efficiency, the CMSIS simplifies the SCB register presentation. In the
CMSIS, the byte array SHP[0] to SHP[12] corresponds to the registers SHPR1-SHPRS3.

AImEl@ 169

11057B-ATARM-28-May-12

ATMEL

12.21.2 Auxiliary Control Register
The ACTLR provides disable bits for the following processor functions:
« IT folding
« write buffer use for accesses to the default memory map
« interruption of multi-cycle instructions.
See the register summary in Table 12-30 on page 169 for the ACTLR attributes. The bit assign-

ments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved | DISFOLD | DISDEFWBUF DISMCYCINT |

+ DISFOLD
When set to 1, disables IT folding. see “About IT folding” on page 170 for more information.

» DISDEFWBUF

When set to 1, disables write buffer use during default memory map accesses. This causes all bus faults to be precise bus
faults but decreases performance because any store to memory must complete before the processor can execute the next
instruction.

This bit only affects write buffers implemented in the Cortex-M3 processor.

* DISMCYCINT

When set to 1, disables interruption of load multiple and store multiple instructions. This increases the interrupt latency of
the processor because any LDM or STM must complete before the processor can stack the current state and enter the
interrupt handler.

12.21.2.1 About IT folding
In some situations, the processor can start executing the first instruction in an IT block while it is
still executing the IT instruction. This behavior is called IT folding, and improves performance,
However, IT folding can cause jitter in looping. If a task must avoid jitter, set the DISFOLD bit to
1 before executing the task, to disable IT folding.

170 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.21.3 CPUID Base Register
The CPUID register contains the processor part number, version, and implementation informa-
tion. See the register summary in Table 12-30 on page 169 for its attributes. The bit assignments
are:

31 30 29 28 27 26 25 24
| Implementer |

23 22 21 20 19 18 17 16
| Variant Constant |

15 14 13 12 11 10 9 8
| PartNo |

| PartNo Revision |

* Implementer
Implementer code:

0x41 = ARM

» Variant

Variant number, the r value in the rnpn product revision identifier:
0x2 =r2p0

e Constant
Reads as OxF

» PartNo
Part number of the processor:

0xC23 = Cortex-M3
* Revision
Revision number, the p value in the rnpn product revision identifier:

0x0 =r2p0

AImEl@ 171

11057B-ATARM-28-May-12

12.21.4 Interrupt Control and State Register
The ICSR:

* provides:
— set-pending and clear-pending bits for the PendSV and SysTick exceptions

* indicates:
— the exception number of the exception being processed
— whether there are preempted active exceptions
— the exception number of the highest priority pending exception
— whether any interrupts are pending.

See the register summary in Table 12-30 on page 169, and the Type descriptions in Table 12-33
on page 194, for the ICSR attributes. The bit assignments are:

31 30 29 28 27 26 25 24
Reserved Reserved | PENDSVSET | PENDSVCLR | PENDSTSET | PENDSTCLR | Reserved
23 22 21 20 19 18 17 16
Reserved for | \oppeNDING VECTPENDING
Debug
15 14 13 12 11 10 9 8
| VECTPENDING RETTOBASE Reserved VECTACTIVE |
7 6 5 4 3 2 1 0
| VECTACTIVE |

» PENDSVSET
RW

PendSV set-pending bit.

Write:

0: no effect

1: changes PendSV exception state to pending.
Read:

0: PendSV exception is not pending

1: PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to pending.
« PENDSVCLR

WO

PendSV clear-pending bit.

Write:

0: no effect

1: removes the pending state from the PendSV exception.

172 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

» PENDSTSET
RW

SysTick exception set-pending bit.

Write:

0: no effect

1: changes SysTick exception state to pending.

Read:

0: SysTick exception is not pending

1: SysTick exception is pending.

» PENDSTCLR

WO

SysTick exception clear-pending bit.

Write:

0: no effect

1. removes the pending state from the SysTick exception.

This bit is WO. On a register read its value is Unknown.

» Reserved for Debug use

RO

This bit is reserved for Debug use and reads-as-zero when the processor is not in Debug.
* ISRPENDING

RO

Interrupt pending flag, excluding Faults:

0: interrupt not pending

1: interrupt pending.

* VECTPENDING

RO

Indicates the exception number of the highest priority pending enabled exception:
0: no pending exceptions

Nonzero = the exception number of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the
PRIMASK register.

AImEl@ 173

11057B-ATARM-28-May-12

ATMEL

+ RETTOBASE
RO

Indicates whether there are preempted active exceptions:

0: there are preempted active exceptions to execute

1: there are no active exceptions, or the currently-executing exception is the only active exception.
e VECTACTIVE

RO

Contains the active exception number:

0: Thread mode

Nonzero = The exception number @ of the currently active exception.

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable, Clear-
Pending, Set-Pending, or Priority Registers, see “Interrupt Program Status Register” on page 65.

When you write to the ICSR, the effect is Unpredictable if you:

» write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit
» write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

Note: 1. Thisis the same value as IPSR bits [8:0] see “Interrupt Program Status Register” on page 65.

174 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.21.5 Vector Table Offset Register

The VTOR indicates the offset of the vector table base address from memory address
0x00000000. See the register summary in Table 12-30 on page 169 for its attributes.

The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved | TBLOFF |
23 22 21 20 19 18 17 16

| TBLOFF |
15 14 13 12 11 10 9 8

| TBLOFF |
7 6 5 4 3 2 1 0

[TBLOFF | Reserved |

e TBLOFF

Vector table base offset field. It contains bits[29:7] of the offset of the table base from the bottom of the memory map.
Bit[29] determines whether the vector table is in the code or SRAM memory region:

0: code

1: SRAM.

Bit[29] is sometimes called the TBLBASE bit.

When setting TBLOFF, you must align the offset to the number of exception entries in the vector table. The minimum align-
ment is 32 words, enough for up to 16 interrupts. For more interrupts, adjust the alignment by rounding up to the next power
of two. For example, if you require 21 interrupts, the alignment must be on a 64-word boundary because the required table
size is 37 words, and the next power of two is 64.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

AImEl@ 175

11057B-ATARM-28-May-12

ATMEL

12.21.6 Application Interrupt and Reset Control Register

The AIRCR provides priority grouping control for the exception model, endian status for data
accesses, and reset control of the system. See the register summary in Table 12-30 on page

169 and Table 12-33 on page 194 for its attributes.

To write to this register, you must write 0x05FA to the VECTKEY field, otherwise the processor

ignores the write.

The bit assignments are:

31 30 29 28 27 26 25 24

| On Read: VECTKEYSTAT, On Write: VECTKEY |
23 22 21 20 19 18 17 16

| On Read: VECTKEYSTAT, On Write: VECTKEY |
15 14 13 12 11 10 9 8

| ENDIANESS Reserved PRIGROUP |
7 6 5 4 3 2 1 0

VECTCLR-
Reserved SYSRESETREQ ACTIVE VECTRESET

* VECTKEYSTAT
Register Key:

Reads as OxFAQ5

e VECTKEY

Register key:

On writes, write O0xX5FA to VECTKEY, otherwise the write is ignored.

+ ENDIANESS

RO

Data endianness bit:

0: Little-endian

ENDIANESS is set from the BIGEND configuration signal during reset.

* PRIGROUP
R/W

Interrupt priority grouping field. This field determines the split of group priority from subpriority, see “Binary point” on page

177.

* SYSRESETREQ

wO

System reset request:

0: no effect

1: asserts a proc_reset_signal.

This is intended to force a large system reset of all major components except for debug.

This bit reads as 0.

176 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

* VECTCLRACTIVE
\We}

Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is
Unpredictable.

* VECTRESET
\We}

Reserved for Debug use. This bit reads as 0. When writing to the register you must write O to this bit, otherwise behavior is
Unpredictable.

12.21.6.1 Binary point
The PRIGROUP field indicates the position of the binary point that splits the PRI_n fields in the
Interrupt Priority Registers into separate group priority and subpriority fields. Table 12-31 shows
how the PRIGROUP value controls this split.

Table 12-31. Priority grouping

Interrupt priority level value, PRI_N[7:0] Number of
Binary Group priority | Subpriority Group
PRIGROUP | point @ bits bits priorities Subpriorities
b011 bxxxx.0000 [7:4] None 16 1
b100 bxxx.y0000 [7:5] [4] 8 2
b101 bxx.yy0000 [7:6] [5:4] 4 4
b110 bx.yyy0000 [7] [6:4] 2 8
bl11 b.yyyy0000 None [7:4] 1 16
1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a sub-

priority field bit.

Determining preemption of an exception uses only the group priority field, see “Interrupt priority
grouping” on page 84.

AImEl@ 177

11057B-ATARM-28-May-12

ATMEL

12.21.7 System Control Register

The SCR controls features of entry to and exit from low power state. See the register summary
in Table 12-30 on page 169 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved SEVONPEND Reserved SLEEPDEEP SLEEONEXIT Reserved |

+ SEVONPEND
Send Event on Pending bit:

0: only enabled interrupts or events can wakeup the processor, disabled interrupts are excluded
1: enabled events and all interrupts, including disabled interrupts, can wakeup the processor.

When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not
waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an sev instruction or an external event.
 SLEEPDEEP

Controls whether the processor uses sleep or deep sleep as its low power mode:

0: sleep

1: deep sleep.

* SLEEPONEXIT

Indicates sleep-on-exit when returning from Handler mode to Thread mode:

0: do not sleep when returning to Thread mode.

1: enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.

178 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.21.8 Configuration and Control Register
The CCR controls entry to Thread mode and enables:
« the handlers for hard fault and faults escalated by FAULTMASK to ignore bus faults
« trapping of divide by zero and unaligned accesses
* access to the STIR by unprivileged software, see “Software Trigger Interrupt Register” on
page 166.
See the register summary in Table 12-30 on page 169 for the CCR attributes.
The bit assignments are:
31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| Reserved |
15 14 13 12 11 10 9 8
| Reserved STKALIGN | BFHFNMIGN |
7 6 5 4 3 2 1 0
UNALIGN_T USERSETM NONBASET
Reserved DIV_O_TRP RP — Reserved PEND HRDENA
* STKALIGN

Indicates stack alignment on exception entry:

0: 4-byte aligned

1: 8-byte aligned.

On exception entry, the processor uses bit[9] of the stacked PSR to indicate the stack alignment. On return from the excep-

tion it uses this stacked bit to restore the correct stack alignment.

* BFHFNMIGN

Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the
hard fault and FAULTMASK escalated handlers:

0: data bus faults caused by load and store instructions cause a lock-up

1: handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.

Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe sys-
tem devices and bridges to detect control path problems and fix them.

« DIV_O_TRP

Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of O:

0: do not trap divide by 0

1: trap divide by 0.

When this bit is set to 0,a divide by zero returns a quotient of 0.

179

ATMEL

11057B-ATARM-28-May-12

¢ UNALIGN_TRP
Enables unaligned access traps:

0: do not trap unaligned halfword and word accesses

1: trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.
* USERSETMPEND

Enables unprivileged software access to the STIR, see “Software Trigger Interrupt Register” on page 166:

0: disable

1: enable.

* NONEBASETHRDENA

Indicates how the processor enters Thread mode:

0: processor can enter Thread mode only when no exception is active.

1. processor can enter Thread mode from any level under the control of an EXC_RETURN value, see “Exception return” on

page 86.

12.21.9 System Handler Priority Registers
The SHPR1-SHPR3 registers set the priority level, 0 to 15 of the exception handlers that have
configurable priority.

SHPR1-SHPR3 are byte accessible. See the register summary in Table 12-30 on page 169 for
their attributes.

The system fault handlers and the priority field and register for each handler are:

Table 12-32. System fault handler priority fields

Handler Field Register description
Memory management PRI 4
fault -
Bus fault PRI 5 System Handler Priority Register 1” on page 181
Usage fault PRI_6
SvCall PRI_11 “System Handler Priority Register 2” on page 182
PendSV PRI_14

“System Handler Priority Register 3” on page 182
SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:4] of each field, and
bits[3:0] read as zero and ignore writes.

180 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.21.9.1 System Handler Priority Register 1
The bit assignments are:

31 30 29 28 27 26 25 24
| PRI_7: Reserved |

23 22 21 20 19 18 17 16

| PRI_6 |
15 14 13 12 11 10 9 8

| PRI_5 |
7 6 5 4 3 2 1 0

| PRI_4 |

« PRI7

Reserved

« PRL6

Priority of system handler 6, usage fault

* PRI_S
Priority of system handler 5, bus fault

e PRI 4
Priority of system handler 4, memory management fault

AImEl@ 181

11057B-ATARM-28-May-12

ATMEL

12.21.9.2 System Handler Priority Register 2
The bit assignments are:

31 30 29 28 27 26 25 24

| PRI_11 |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved |

PRI _11

Priority of system handler 11, SVCall

12.21.9.3 System Handler Priority Register 3
The bit assignments are:

31 30 29 28 27 26 25 24

| PRI_15 |
23 22 21 20 19 18 17 16

| PRI_14 |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved |

* PRI_15

Priority of system handler 15, SysTick exception

 PRI_14
Priority of system handler 14, PendSV

182 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.21.10 System Handler Control and State Register
The SHCSR enables the system handlers, and indicates:

« the pending status of the bus fault, memory management fault, and SVC exceptions

« the active status of the system handlers.

See the register summary in Table 12-30 on page 169 for the SHCSR attributes. The bit assign-

ments are:
31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| Reserved USGFAULTENA | BUSFAULTENA | MEMFAULTENA |
15 14 13 12 11 10 9 8
SVCALIE)PENDE BUSFAEI[_)TPEND MEMFI,DAEJ[I)_TPEN USGFAE[L)TPEND SYSTICKACT PENDSVACT Reserved MONITORACT
7 6 5 4 3 2 1 0
| SVCALLAVCT | Reserved USGFAULTACT Reserved BUSFAULTACT MEMFAULTACT

e USGFAULTENA
Usage fault enable bit, set to 1 to enable M

« BUSFAULTENA
Bus fault enable bit, set to 1 to enable®

¢ MEMFAULTENA
Memory management fault enable bit, set to 1 to enable®

* SVCALLPENDED
SVC call pending bit, reads as 1 if exception is pending

« BUSFAULTPENDED
Bus fault exception pending bit, reads as 1 if exception is pending®

« MEMFAULTPENDED
Memory management fault exception pending bit, reads as 1 if exception is pending®

e USGFAULTPENDED
Usage fault exception pending bit, reads as 1 if exception is pending®

* SYSTICKACT
SysTick exception active bit, reads as 1 if exception is active @

e PENDSVACT
PendSV exception active bit, reads as 1 if exception is active

Enable bits, set to 1 to enable the exception, or set to 0 to disable the exception.

Pending bits, read as 1 if the exception is pending, or as 0 if it is not pending. You can write to these bits to change the pending

status of the exceptions.

3. Active bits, read as 1 if the exception is active, or as 0 if it is not active. You can write to these bits to change the active status of

the exceptions, but see the Caution in this section.

ATMEL

11057B-ATARM-28-May-12

183

* MONITORACT
Debug monitor active bit, reads as 1 if Debug monitor is active

e SVCALLACT
SVC call active bit, reads as 1 if SVC call is active

* USGFAULTACT
Usage fault exception active bit, reads as 1 if exception is active

e BUSFAULTACT
Bus fault exception active bit, reads as 1 if exception is active

 MEMFAULTACT
Memory management fault exception active bit, reads as 1 if exception is active

If you disable a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

You can write to this register to change the pending or active status of system exceptions. An OS kernel can write to the
active bits to perform a context switch that changes the current exception type.

 Software that changes the value of an active bit in this register without correct adjustment to the stacked content can
cause the processor to generate a fault exception. Ensure software that writes to this register retains and subsequently
restores the current active status.

» After you have enabled the system handlers, if you have to change the value of a bit in this register you must use a read-
modify-write procedure to ensure that you change only the required bit.

184 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.21.11 Configurable Fault Status Register
The CFSR indicates the cause of a memory management fault, bus fault, or usage fault. See the
register summary in Table 12-30 on page 169 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Usage Fault Status Register: UFSR |
23 22 21 20 19 18 17 16

| Usage Fault Status Register: UFSR |
15 14 13 12 11 10 9 8

| Bus Fault Status Register: BFSR |
7 6 5 4 3 2 1 0

Memory Management Fault Status Register: MMFSR

11057B-ATARM-28-May-12

The following subsections describe the subregisters that make up the CFSR:

* “Memory Management Fault Status Register” on page 186

« “Bus Fault Status Register” on page 187

 “Usage Fault Status Register” on page 189.

The CFSR is byte accessible. You can access the CFSR or its subregisters as follows:

« access the complete CFSR with a word access to 0OXEOOOED28
access the MMFSR with a byte access to OXEOOOED28
access the MMFSR and BFSR with a halfword access to 0OXEOOOED28
access the BFSR with a byte access to OXEOOOED29
access the UFSR with a halfword access to OXEOOOED2A.

ATMEL

185

ATMEL

12.21.11.1 Memory Management Fault Status Register
The flags in the MMFSR indicate the cause of memory access faults. The bit assignments are:

7 6 5 4 3 2 1 0
[MMARVALID | Reserved | MSTKERR | munstkerr [Reserved | DAccvioL | IAccviOL

« MMARVALID
Memory Management Fault Address Register (MMAR) valid flag:

0: value in MMAR is not a valid fault address
1: MMAR holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set
this bit to 0. This prevents problems on return to a stacked active memory management fault handler whose MMAR value
has been overwritten.

+ MSTKERR

Memory manager fault on stacking for exception entry:

0: no stacking fault

1: stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor
has not written a fault address to the MMAR.

+ MUNSTKERR

Memory manager fault on unstacking for a return from exception:

0: no unstacking fault

1: unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The proces-
sor has not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a
fault address to the MMAR.

 DACCVIOL

Data access violation flag:

0: no data access violation fault

1: the processor attempted a load or store at a location that does not permit the operation.
When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded
the MMAR with the address of the attempted access.

* IACCVIOL

Instruction access violation flag:

0: no instruction access violation fault

1: the processor attempted an instruction fetch from a location that does not permit execution.
This fault occurs on any access to an XN region, even when the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not
written a fault address to the MMAR.

186 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.21.11.2 Bus Fault Status Register
The flags in the BFSR indicate the cause of a bus access fault. The bit assignments are:

7 6 5 4 3 2 1 0
[BFRVALID | Reserved | STKERR | UNSTKERR [mpreciserr | PRECISERR | IBUSERR
« BFARVALID

Bus Fault Address Register (BFAR) valid flag:
0: value in BFAR is not a valid fault address
1: BFAR holds a valid fault address.

The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a
memory management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This pre-
vents problems if returning to a stacked active bus fault handler whose BFAR value has been overwritten.

+ STKERR

Bus fault on stacking for exception entry:

0: no stacking fault

1: stacking for an exception entry has caused one or more bus faults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incor-
rect. The processor does not write a fault address to the BFAR.

+ UNSTKERR

Bus fault on unstacking for a return from exception:

0: no unstacking fault

1. unstack for an exception return has caused one or more bus faults.

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still
present. The processor does not adjust the SP from the failing return, does not performed a new save, and does not write
a fault address to the BFAR.

* IMPRECISERR
Imprecise data bus error:

0: no imprecise data bus error

1: a data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the
error.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault
priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority pro-
cesses. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects
both IMPRECISERR set to 1 and one of the precise fault status bits set to 1.

AImEl@ 187

11057B-ATARM-28-May-12

ATMEL

» PRECISERR
Precise data bus error:

0: no precise data bus error

1: a data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused the
fault.

When the processor sets this bit is 1, it writes the faulting address to the BFAR.
* IBUSERR

Instruction bus error:

0: no instruction bus error

1: instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it
attempts to issue the faulting instruction.

When the processor sets this bit is 1, it does not write a fault address to the BFAR.

188 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.21.11.3 Usage Fault Status Register
The UFSR indicates the cause of a usage fault. The bit assignments are:

15 14 13 12 11 10 9 8
| Reserved | DIVBYZERO | UNALIGNED |
7 6 5 4 3 2 1 0
| Reserved NOCP INVPC | INVSTATE [unperinsTR |
+ DIVBYZERO

Divide by zero usage fault:
0: no divide by zero fault, or divide by zero trapping not enabled
1: the processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed
the divide by zero.

Enable trapping of divide by zero by setting the DIV_0_TRP bit in the CCR to 1, see “Configuration and Control Register”
on page 179.

* UNALIGNED

Unaligned access usage fault:

0: no unaligned access fault, or unaligned access trapping not enabled

1: the processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the CCR to 1, see “Configuration and Control
Register” on page 179.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of UNALIGN_TRP.
* NOCP

No coprocessor usage fault. The processor does not support coprocessor instructions:

0: no usage fault caused by attempting to access a coprocessor

1: the processor has attempted to access a coprocessor.

* INVPC

Invalid PC load usage fault, caused by an invalid PC load by EXC_RETURN:

0: no invalid PC load usage fault

1: the processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid
EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the ille-
gal load of the PC.

* INVSTATE

Invalid state usage fault:

0: no invalid state usage fault

1: the processor has attempted to execute an instruction that makes illegal use of the EPSR.

AImEl@ 189

11057B-ATARM-28-May-12

ATMEL

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal use
of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

* UNDEFINSTR

Undefined instruction usage fault:

0: no undefined instruction usage fault

1: the processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.

An undefined instruction is an instruction that the processor cannot decode.

The UFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is setto 1 is
cleared to 0 only by writing 1 to that bit, or by a reset.

190 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.21.12 Hard Fault Status Register
The HFSR gives information about events that activate the hard fault handler. See the register
summary in Table 12-30 on page 169 for its attributes.

This register is read, write to clear. This means that bits in the register read normally, but writing
1 to any bit clears that bit to 0. The bit assignments are:

31 30 29 28 27 26 25 24

| DEBUGEVT FORCED | Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved | VECTTBL | Reserved |

« DEBUGEVT

Reserved for Debug use. When writing to the register you must write 0 to this bit, otherwise behavior is Unpredictable.

« FORCED

Indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either
because of priority or because it is disabled:

0: no forced hard fault

1: forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.
« VECTTBL

Indicates a bus fault on a vector table read during exception processing:

0: no bus fault on vector table read

1: bus fault on vector table read.

This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the
exception.

The HFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is setto 1 is
cleared to 0 only by writing 1 to that bit, or by a reset.

AImEl@ 191

11057B-ATARM-28-May-12

ATMEL

12.21.13 Memory Management Fault Address Register
The MMFAR contains the address of the location that generated a memory management fault.
See the register summary in Table 12-30 on page 169 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

« ADDRESS

When the MMARVALID bit of the MMFSR is set to 1, this field holds the address of the location that generated the memory
management fault

When an unaligned access faults, the address is the actual address that faulted. Because a single read or write instruction
can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size.

Flags in the MMFSR indicate the cause of the fault, and whether the value in the MMFAR is valid. See “Memory Manage-
ment Fault Status Register” on page 186.

12.21.14 Bus Fault Address Register
The BFAR contains the address of the location that generated a bus fault. See the register sum-
mary in Table 12-30 on page 169 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

« ADDRESS

When the BFARVALID bit of the BFSR is set to 1, this field holds the address of the location that generated the bus fault

When an unaligned access faults the address in the BFAR is the one requested by the instruction, even if it is not the
address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the BFAR is valid. See “Bus Fault Status Regis-
ter” on page 187.

192 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.21.15 System control block design hints and tips
Ensure software uses aligned accesses of the correct size to access the system control block

registers:

« except for the CFSR and SHPR1-SHPR3, it must use aligned word accesses

« for the CFSR and SHPR1-SHPR3 it can use byte or aligned halfword or word accesses.
The processor does not support unaligned accesses to system control block registers.

In a fault handler. to determine the true faulting address:

* Read and save the MMFAR or BFAR value.

+ Read the MMARVALID bit in the MMFSR, or the BFARVALID bit in the BFSR. The MMFAR or
BFAR address is valid only if this bit is 1.

Software must follow this sequence because another higher priority exception might change the
MMFAR or BFAR value. For example, if a higher priority handler preempts the current fault han-
dler, the other fault might change the MMFAR or BFAR value.

AImEl@ 193

11057B-ATARM-28-May-12

ATMEL

12.22 System timer, SysTick

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to
zero, reloads (wraps to) the value in the LOAD register on the next clock edge, then counts
down on subsequent clocks.

When the processor is halted for debugging the counter does not decrement.

The system timer registers are:

Table 12-33. System timer registers summary

Required | Reset

Address Name Type privilege value Description
OxXEOOOEO10 CTRL RwW Privileged | 0x00000004 “SysTick Control and Status Register” on page 195
OxEOOOEO014 LOAD RW Privileged | 0x00000000 “SysTick Reload Value Register” on page 196
OxEOOOEO018 VAL RW Privileged | 0x00000000 “SysTick Current Value Register” on page 197
OxEOOOEO1C CALIB RO Privileged | 0x0002904 “SysTick Calibration Value Register” on page 198

1. SysTick calibration value.

104 SATIM S X/ /0 —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.22.1 SysTick Control and Status Register
The SysTick CTRL register enables the SysTick features. See the register summary in Table 12-
33 on page 194 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved COUNTFLAG |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved CLKSOURCE TICKINT ENABLE |

» COUNTFLAG
Returns 1 if timer counted to O since last time this was read.

» CLKSOURCE

Indicates the clock source:

0: MCK/8

1: MCK

e TICKINT

Enables SysTick exception request:

0: counting down to zero does not assert the SysTick exception request
1: counting down to zero to asserts the SysTick exception request.
Software can use COUNTFLAG to determine if SysTick has ever counted to zero.
« ENABLE

Enables the counter:

0: counter disabled

1: counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the LOAD register and then counts down. On reach-
ing 0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It then loads the
RELOAD value again, and begins counting.

AImEl@ 195

11057B-ATARM-28-May-12

ATMEL

12.22.2 SysTick Reload Value Register

The LOAD register specifies the start value to load into the VAL register. See the register sum-
mary in Table 12-33 on page 194 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| RELOAD |
15 14 13 12 11 10 9 8

| RELOAD |
7 6 5 4 3 2 1 0

| -RELOAD |

* RELOAD

Value to load into the VAL register when the counter is enabled and when it reaches 0, see “Calculating the RELOAD
value” .

12.22.2.1 Calculating the RELOAD value

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A start value of O
is possible, but has no effect because the SysTick exception request and COUNTFLAG are acti-
vated when counting from 1 to 0.

The RELOAD value is calculated according to its use:

« To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD
value of N-1. For example, if the SysTick interrupt is required every 100 clock pulses, set
RELOAD to 99.

« To deliver a single SysTick interrupt after a delay of N processor clock cycles, use a RELOAD
of value N. For example, if a SysTick interrupt is required after 400 clock pulses, set RELOAD
to 400.

196 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.22.3 SysTick Current Value Register

The VAL register contains the current value of the SysTick counter. See the register summary in
Table 12-33 on page 194 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| CURRENT |
15 14 13 12 11 10 9 8

| CURRENT |
7 6 5 4 3 2 1 0

| CURRENT |

* CURRENT

Reads return the current value of the SysTick counter.

A write of any value clears the field to 0, and also clears the SysTick CTRL.COUNTFLAG bit to O.

AImEl@ 197

11057B-ATARM-28-May-12

ATMEL

12.22.4 SysTick Calibration Value Register

The CALIB register indicates the SysTick calibration properties. See the register summary in
Table 12-33 on page 194 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

[NOREF SKEW | Reserved |
23 22 21 20 19 18 17 16

| TENMS |
15 14 13 12 11 10 9 8

| TENMS |
7 6 5 4 3 2 1 0

| TENMS |

+ NOREF

Reads as zero.

« SKEW
Reads as zero

« TENMS

Read as 0x0002904. The SysTick calibration value is fixed at 0x0002904 (10500), which allows the generation of a time
base of 1 ms with SysTick clock at 10.5 MHz (84/8 = 10.5 MHz)

12.22.5 SysTick design hints and tips

The SysTick counter runs on the processor clock. If this clock signal is stopped for low power
mode, the SysTick counter stops.

Ensure software uses aligned word accesses to access the SysTick registers.

198 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

12.23 Memory protection unit

11057B-ATARM-28-May-12

This section describes the Memory protection unit (MPU).

The MPU divides the memory map into a number of regions, and defines the location, size,
access permissions, and memory attributes of each region. It supports:

« independent attribute settings for each region

« overlapping regions

 export of memory attributes to the system.
The memory attributes affect the behavior of memory accesses to the region. The Cortex-M3
MPU defines:

* eight separate memory regions, 0-7

 a background region.

When memory regions overlap, a memory access is affected by the attributes of the region with
the highest number. For example, the attributes for region 7 take precedence over the attributes
of any region that overlaps region 7.

The background region has the same memory access attributes as the default memory map, but
is accessible from privileged software only.

The Cortex-M3 MPU memory map is unified. This means instruction accesses and data
accesses have same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates
a memory management fault. This causes a fault exception, and might cause termination of the
process in an OS environment.

In an OS environment, the kernel can update the MPU region setting dynamically based on the
process to be executed. Typically, an embedded OS uses the MPU for memory protection.

Configuration of MPU regions is based on memory types, see “Memory regions, types and attri-
butes” on page 72.

Table 12-34 shows the possible MPU region attributes. These include Share ability and cache
behavior attributes that are not relevant to most microcontroller implementations. See “MPU
configuration for a microcontroller” on page 212 for guidelines for programming such an
implementation.

Table 12-34. Memory attributes summary

Memory
type Shareability | Other attributes Description
All accesses to Strongly-ordered memory occur
Strongly- - :
- - in program order. All Strongly-ordered regions
ordered
are assumed to be shared.
Device Shared i Memory-mapped peripherals that several
processors share.

AImEl@ 199

ATMEL

Table 12-34. Memory attributes summary (Continued)

Memory
type Shareability | Other attributes Description
Non-shared i Memory-mapped peripherals that only a single
processor uses.
Normal Shared Normal memory that is shared between several
processors.
Non-shared Normal memory that only a single processor

uses.

Use the MPU registers to define the MPU regions and their attributes. The MPU registers are:

Table 12-35. MPU registers summary

Required | Reset
Address Name Type privilege value Description
OxEOOOED90 TYPE RO Privileged | 0x00000800 “MPU Type Register” on page 201
OXEOOOED94 CTRL RwW Privileged | 0x00000000 “MPU Control Register” on page 202
OxXEOOOED98 RNR RW Privileged | 0x00000000 “MPU Region Number Register” on page 204
OxEOOOED9C RBAR RW Privileged | 0x00000000 “MPU Region Base Address Register” on page 205
OXEOOOEDAO RASR RW Privileged | 0x00000000 “MPU Region Attribute and Size Register” on page 206
OXEOOOEDA4 | RBAR_Al | RW Privileged | 0x00000000 | A\ias Of RBAR, see "MPU Region Base Address
- Register” on page 205
OXEOOOEDA8 | RASR_AL | RW Privileged | 0x00000000 | Aias Of RASR, see "MPU Region Attribute and Size
Register” on page 206
OXEOOOEDAC | RBAR A2 | RW Privileged | 0x00000000 | A\ias Of RBAR, see "MPU Region Base Address
Register” on page 205
OXEOOOEDBO | RASR_A2 | RW Privileged | 0x00000000 | A\ias Of RASR, see "MPU Region Attribute and Size
- Register” on page 206
OXEOOOEDB4 | RBAR_A3 | RW Privileged | 0x00000000 | Aias Of RBAR, see "MPU Region Base Address
Register” on page 205
OXEOOOEDB8 | RASR A3 | RW Privileged | 0x00000000 | A\ias Of RASR, see "MPU Region Attribute and Size
Register” on page 206

200

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.23.1 MPU Type Register

The TYPE register indicates whether the MPU is present, and if so, how many regions it sup-
ports. See the register summary in Table 12-35 on page 200 for its attributes. The bit

assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| IREGION |
15 14 13 12 11 10 9 8

| DREGION |
7 6 5 4 3 2 1 0

| Reserved SEPARATE |

« IREGION

Indicates the number of supported MPU instruction regions.

Always contains 0x00. The MPU memory map is unified and is described by the DREGION field.

* DREGION

Indicates the number of supported MPU data regions:

0x08 = Eight MPU regions.

» SEPARATE

Indicates support for unified or separate instruction and date memory maps:

0: unified.

11057B-ATARM-28-May-12

ATMEL

201

ATMEL

12.23.2 MPU Control Register
The MPU CTRL register:
e enables the MPU
« enables the default memory map background region

* enables use of the MPU when in the hard fault, Non-maskable Interrupt (NMI), and
FAULTMASK escalated handlers.

See the register summary in Table 12-35 on page 200 for the MPU CTRL attributes. The bit
assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved PRIVDEFENA | HFNMIENA ENABLE |

« PRIVDEFENA
Enables privileged software access to the default memory map:

0: If the MPU is enabled, disables use of the default memory map. Any memory access to a location not covered by any
enabled region causes a fault.

1: If the MPU is enabled, enables use of the default memory map as a background region for privileged software accesses.

When enabled, the background region acts as if it is region number -1. Any region that is defined and enabled has priority
over this default map.

If the MPU is disabled, the processor ignores this bit.

* HFNMIENA

Enables the operation of MPU during hard fault, NMI, and FAULTMASK handlers.
When the MPU is enabled:

0: MPU is disabled during hard fault, NMI, and FAULTMASK handlers, regardless of the value of the ENABLE bit
1: the MPU is enabled during hard fault, NMI, and FAULTMASK handlers.

When the MPU is disabled, if this bit is set to 1 the behavior is Unpredictable.

» ENABLE

Enables the MPU:

0: MPU disabled

1: MPU enabled.

When ENABLE and PRIVDEFENA are both set to 1:

For privileged accesses, the default memory map is as described in “Memory model” on page 71. Any access by privileged
software that does not address an enabled memory region behaves as defined by the default memory map.

202 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

Any access by unprivileged software that does not address an enabled memory region causes a memory management
fault.

XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system to function unless
the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are enabled, then only privileged soft-
ware can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory attributes as if the
MPU is not implemented, see Table 12-34 on page 199. The default memory map applies to accesses from both privileged
and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other areas are
accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for an exception with
priority —1 or —2. These priorities are only possible when handling a hard fault or NMI exception, or when FAULTMASK is
enabled. Setting the HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

AImEl@ 203

11057B-ATARM-28-May-12

ATMEL

12.23.3 MPU Region Number Register

The RNR selects which memory region is referenced by the RBAR and RASR registers. See the
register summary in Table 12-35 on page 200 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| REGION |

« REGION

Indicates the MPU region referenced by the RBAR and RASR registers.
The MPU supports 8 memory regions, so the permitted values of this field are 0-7.

Normally, you write the required region number to this register before accessing the RBAR or RASR. However you can
change the region number by writing to the RBAR with the VALID bit set to 1, see “MPU Region Base Address Register” on
page 205. This write updates the value of the REGION field.

204 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.23.4 MPU Region Base Address Register

The RBAR defines the base address of the MPU region selected by the RNR, and can update
the value of the RNR. See the register summary in Table 12-35 on page 200 for its attributes.

Write RBAR with the VALID bit set to 1 to change the current region number and update the
RNR. The bit assignments are:

31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 N

| ADDR |
N-1 6 5 4 3 2 1 0

| Reserved [vaup | REGION |

« ADDR

Region base address field. The value of N depends on the region size. For more information see “The ADDR field” .
* VALID

MPU Region Number valid bit:

Write:

0: RNR not changed, and the processor:

updates the base address for the region specified in the RNR

ignores the value of the REGION field

1: the processor:

updates the value of the RNR to the value of the REGION field
updates the base address for the region specified in the REGION field.
Always reads as zero.

* REGION

MPU region field:

For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the RNR.

12.23.4.1 The ADDR field

The ADDR field is bits[31:N] of the RBAR. The region size, as specified by the SIZE field in the
RASR, defines the value of N:

N = Log,(Regi on size in bytes),
If the region size is configured to 4GB, in the RASR, there is no valid ADDR field. In this case,
the region occupies the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64KB region must be
aligned on a multiple of 64KB, for example, at 0x00010000 or 0x00020000.

AImEl@ 205

11057B-ATARM-28-May-12

ATMEL

12.23.5 MPU Region Attribute and Size Register
The RASR defines the region size and memory attributes of the MPU region specified by the
RNR, and enables that region and any subregions. See the register summary in Table 12-35 on
page 200 for its attributes.

RASR is accessible using word or halfword accesses:

« the most significant halfword holds the region attributes
« the least significant halfword holds the region size and the region and subregion enable bits.
The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved | XN Reserved | AP |
23 22 21 20 19 18 17 16

| Reserved TEX | s C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| Reserved | SIZE ENABLE |

« XN

Instruction access disable bit:
0: instruction fetches enabled
1: instruction fetches disabled.

« AP
Access permission field, see Table 12-39 on page 208.

- TEX,C,B
Memory access attributes, see Table 12-37 on page 207.

« S
Shareable bit, see Table 12-36 on page 207.

» SRD

Subregion disable bits. For each bit in this field:

0: corresponding sub-region is enabled

1: corresponding sub-region is disabled

See “Subregions” on page 211 for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD

field as 0x00.

» SIZE

Specifies the size of the MPU protection region. The minimum permitted value is 3 (b00010), see See “SIZE field values”
on page 207 for more information.

* ENABLE

206 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

Region enable bit.

For information about access permission, see “MPU access permission attributes” .

12.23.5.1 SIZE field values
The SIZE field defines the size of the MPU memory region specified by the RNR. as follows:

(Region size in bytes) = 2(87&1

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. Table 12-36 gives
example SIZE values, with the corresponding region size and value of N in the RBAR.

Table 12-36. Example SIZE field values

SIZE value | Region size | Value of N® Note
b00100 (4) 32B 5 Minimum permitted size
b01001 (9) | 1KB 10 -
b10011 (19) | 1MB 20 -
b11101 (29) | 1GB 30 -
b11111 (31) | 4GB b01100 Maximum possible size
1. In the RBAR, see “MPU Region Base Address Register” on page 205.

12.23.6 MPU access permission attributes
This section describes the MPU access permission attributes. The access permission bits, TEX,
C, B, S, AP, and XN, of the RASR, control access to the corresponding memory region. If an
access is made to an area of memory without the required permissions, then the MPU generates
a permission fault.

Table 12-37 shows the encodings for the TEX, C, B, and S access permission bits.

Table 12-37. TEX, C, B, and S encoding

TEX | C B S Memory type Shareability | Other attributes
Strongly-
@ -
0 0 X ordered Shareable
1 x® | Device Shareable -
Not)))
b00O 0 0 Normal shareable Outer and inner write-through. No write
allocate.
1 Shareable
1
Not
1 0 Normal shareable Outer and inner write-back. No write
allocate.
1 Shareable

AImEl@ 207

11057B-ATARM-28-May-12

208

ATMEL

Table 12-37. TEX, C, B, and S encoding (Continued)
TEX | C B S Memory type Shareability | Other attributes

Not
0
0 0 Normal shareable
1 Shareable
1 x® | Reserved encoding -
b001 0 e Implementation defined i
attributes.
1 Not]))
1 0 Normal shareable Outer and inner write-back. Write and
read allocate.
1 Shareable
0 x® | Device Not Nonshared Device.
0 shareable
b010 1 x® | Reserved encoding -
1 x® | x® | Reserved encoding -
0 Not
bIB | o | A Normal shareable
B
1 Shareable
1. The MPU ignores the value of this bit.

Table 12-38 shows the cache policy for memory attribute encodings with a TEX value is in the

range 4-7.
Table 12-38. Cache policy for memory attribute encoding
Encoding, AA or BB | Corresponding cache policy
00 Non-cacheable
01 Write back, write and read allocate
10 Write through, no write allocate
11 Write back, no write allocate

Table 12-39 shows the AP encodings that define the access permissions for privileged and
unprivileged software.

Table 12-39. AP encoding

Privileged Unprivileged
AP[2:0] | permissions permissions Description
000 No access No access All accesses generate a permission fault
001 RW No access Access from privileged software only
010 RW RO Writes by unprivileged software generate a permission
fault
011 RW RW Full access
100 Unpredictable Unpredictable | Reserved

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

Table 12-39. AP encoding (Continued)

Privileged Unprivileged
AP[2:0] | permissions permissions Description
101 RO No access Reads by privileged software only
110 RO RO Read only, by privileged or unprivileged software
111 RO RO Read only, by privileged or unprivileged software

12.23.7 MPU mismatch

When an access violates the MPU permissions, the processor generates a memory manage-
ment fault, see “Exceptions and interrupts” on page 70. The MMFSR indicates the cause of the
fault. See “Memory Management Fault Status Register” on page 186 for more information.

12.23.8 Updating an MPU region

To update the attributes for an MPU region, update the RNR, RBAR and RASR registers. You
can program each register separately, or use a multiple-word write to program all of these regis-
ters. You can use the RBAR and RASR aliases to program up to four regions simultaneously
using an STM instruction.

12.23.8.1 Updating an MPU region using separate words
Simple code to configure one region:

;7 RL
; R2
7 R3
. R4

regi on numnber

si zel/ enabl e

attributes
addr ess

LDR RO, =MPU_RNR
STR R1, [RO, #0x0]
STR R4, [RO, #0x4]

STRH R2,
STRH R3,

OxEOOOED98, MPU regi on nunber register

; Regi on
; Regi on

[RO, #0x8] ; Regi on
[RO, #OxA] ; Regi on

Nunber

Base Address

Si ze and Enabl e
Attribute

Disable a region before writing new region settings to the MPU if you have previously enabled
the region being changed. For example:

; RL
. R2
; R3
; R4

regi on numnber
= si zel enabl e

attributes
addr ess

LDR RO, =MPU_RNR
STR RL, [RO, #0x0]
BIC R, R2, #1

STRH R2,

STR R4, [RO, #0x4]

; OXEOOOED98, MPU regi on nunber register
; Regi on Nunber
; Disable

[RO, #0x8] ; Region Size and Enabl e

; Regi on Base Address

STRH R3, [RO, #O0xA] Region Attribute
ORR R2, #1 ;. Enabl e
STRH R2, [RO, #0x8] ; Region Size and Enabl e

11057B-ATARM-28-May-12

ATMEL

209

12.23.8.2

210

Updating an

ATMEL

Software must use memory barrier instructions:

» before MPU setup if there might be outstanding memory transfers, such as buffered writes,
that might be affected by the change in MPU settings

« after MPU setup if it includes memory transfers that must use the new MPU settings.

However, memory barrier instructions are not required if the MPU setup process starts by enter-
ing an exception handler, or is followed by an exception return, because the exception entry and
exception return mechanism cause memory barrier behavior.

Software does not need any memory barrier instructions during MPU setup, because it accesses
the MPU through the PPB, which is a Strongly-Ordered memory region.

For example, if you want all of the memory access behavior to take effect immediately after the
programming sequence, use a DSB instruction and an ISB instruction. A DSB is required after
changing MPU settings, such as at the end of context switch. An ISB is required if the code that
programs the MPU region or regions is entered using a branch or call. If the programming
sequence is entered using a return from exception, or by taking an exception, then you do not
require an ISB.

MPU region using multi-word writes
You can program directly using multi-word writes, depending on how the information is divided.
Consider the following reprogramming:

; RL = regi on nunber

R2 = address
. R3 = size, attributes in one
LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register

STR R1, [RO, #0x0] ; Regi on Nunber

STR R2, [RO, #0x4] ; Regi on Base Address

STR R3, [RO, #0x8] ; Region Attribute, Size and Enable
Use an STM instruction to optimize this:

; RL = regi on nunber

: R2 = address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register

STM RO, {R1l-R3} ; Regi on Nunber, address, attribute, size and enable

You can do this in two words for pre-packed information. This means that the RBAR contains the
required region number and had the VALID bit set to 1, see “MPU Region Base Address Regis-
ter” on page 205. Use this when the data is statically packed, for example in a boot loader:

; RL = address and regi on nunber in one
; R2 = size and attributes in one
LDR RO, =MPU_RBAR ; OxEOOOED9C, MPU Regi on Base register
STR R1l, [RO, #0x0] ; Region base address and
; region nunber conbined with VALID (bit 4) set to 1
STR R2, [RO, #0x4] ; Region Attribute, Size and Enable

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

Use an STM instruction to optimize this:

; R1L = address and regi on nunber in one

R2 = size and attributes in one

LDR RO, =MPU_RBAR ; OxXEOOOEDOSC, MPU Regi on Base register

STM RO, {Rl-R2} ; Regi on base address, region nunber and VALID bit,

and Region Attribute, Size and Enabl e

12.23.8.3 Subregions
Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the correspond-
ing bit in the SRD field of the RASR to disable a subregion, see “MPU Region Attribute and Size
Register” on page 206. The least significant bit of SRD controls the first subregion, and the most
significant bit controls the last subregion. Disabling a subregion means another region overlap-
ping the disabled range matches instead. If no other enabled region overlaps the disabled
subregion the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions, With regions of these sizes, you
must set the SRD field to 0x00, otherwise the MPU behavior is Unpredictable.

12.23.8.4 Example of SRD use
Two regions with the same base address overlap. Region one is 128KB, and region two is
512KB. To ensure the attributes from region one apply to the first128KB region, set the SRD
field for region two to bO0000011 to disable the first two subregions, as Figure 12-9 shows

Figure 12-9. SRD use

Region 2, with Offset from
subregions base address
512KB
448KB
384KB
320KB
256KB
Region 1 192KB

128KB
Disabled subregion 8

64KB
Disabl i
Base address of both regions Isabled subregion 0

12.23.9 MPU design hints and tips
To avoid unexpected behavior, disable the interrupts before updating the attributes of a region
that the interrupt handlers might access.

Ensure software uses aligned accesses of the correct size to access MPU registers:

« except for the RASR, it must use aligned word accesses
« for the RASR it can use byte or aligned halfword or word accesses.
The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused
regions to prevent any previous region settings from affecting the new MPU setup.

AImEl@ 211

11057B-ATARM-28-May-12

ATMEL

12.23.9.1 MPU configuration for a microcontroller
Usually, a microcontroller system has only a single processor and no caches. In such a system,
program the MPU as follows:

Table 12-40. Memory region attributes for a microcontroller

Memory region | TEX C B S Memorytype and attributes

Flash memory b000 Normal memory, Non-shareable, write-through

Internal SRAM b000
External SRAM b000
Peripherals b000

Normal memory, Shareable, write-back, write-allocate

0|0
0 | 1 | Normal memory, Shareable, write-through
1)1
1)1

O |r |k |k

Device memory, Shareable

In most microcontroller implementations, the share ability and cache policy attributes do not
affect the system behavior. However, using these settings for the MPU regions can make the
application code more portable. The values given are for typical situations. In special systems,
such as multiprocessor designs or designs with a separate DMA engine, the share ability attri-
bute might be important. In these cases refer to the recommendations of the memory device
manufacturer.

212 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

12.24 Glossary

Abort

Aligned

Banked register

Base register

Breakpoint

Condition field

Conditional execution

Context

Coprocessor

11057B-ATARM-28-May-12

This glossary describes some of the terms used in technical documents from ARM.

A mechanism that indicates to a processor that the value associated with a memory access is
invalid. An abort can be caused by the external or internal memory system as a result of
attempting to access invalid instruction or data memory.

A data item stored at an address that is divisible by the number of bytes that defines the data
size is said to be aligned. Aligned words and halfwords have addresses that are divisible by four
and two respectively. The terms word-aligned and halfword-aligned therefore stipulate
addresses that are divisible by four and two respectively.

A register that has multiple physical copies, where the state of the processor determines which
copy is used. The Stack Pointer, SP (R13) is a banked register.

In instruction descriptions, a register specified by a load or store instruction that is used to hold
the base value for the instruction’s address calculation. Depending on the instruction and its
addressing mode, an offset can be added to or subtracted from the base register value to form
the address that is sent to memory.

See also “Index register”

A breakpoint is a mechanism provided by debuggers to identify an instruction at which program
execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of
register contents, memory locations, variable values at fixed points in the program execution to
test that the program is operating correctly. Breakpoints are removed after the program is suc-
cessfully tested.

A four-bit field in an instruction that specifies a condition under which the instruction can
execute.

If the condition code flags indicate that the corresponding condition is true when the instruction
starts executing, it executes normally. Otherwise, the instruction does nothing.

The environment that each process operates in for a multitasking operating system. In ARM pro-
cessors, this is limited to mean the physical address range that it can access in memory and the
associated memory access permissions.

A processor that supplements the main processor. Cortex-M3 does not support any
COprocessors.

AImEl@ 213

Debugger

ATMEL

A debugging system that includes a program, used to detect, locate, and correct software faults,
together with custom hardware that supports software debugging.

Direct Memory Access (DMA)

Doubleword

Doubleword-aligned

Endianness

Exception

Exception service routine

Exception vector

Flat address mapping

Halfword

lllegal instruction

Implementation-defined

An operation that accesses main memory directly, without the processor performing any
accesses to the data concerned.

A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise
stated.

A data item having a memory address that is divisible by eight.

Byte ordering. The scheme that determines the order that successive bytes of a data word are
stored in memory. An aspect of the system’s memory mapping.

See also “Little-endian (LE)”

An event that interrupts program execution. When an exception occurs, the processor suspends
the normal program flow and starts execution at the address indicated by the corresponding
exception vector. The indicated address contains the first instruction of the handler for the
exception.

An exception can be an interrupt request, a fault, or a software-generated system exception.
Faults include attempting an invalid memory access, attempting to execute an instruction in an
invalid processor state, and attempting to execute an undefined instruction.

See “Interrupt handler”

See “Interrupt vector”

A system of organizing memory in which each physical address in the memory space is the
same as the corresponding virtual address.

A 16-bit data item.

An instruction that is architecturally Undefined.

The behavior is not architecturally defined, but is defined and documented by individual
implementations.

214 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

Implementation-specific

The behavior is not architecturally defined, and does not have to be documented by individual
implementations. Used when there are a number of implementation options available and the
option chosen does not affect software compatibility.

Index register

In some load and store instruction descriptions, the value of this register is used as an offset to
be added to or subtracted from the base register value to form the address that is sent to mem-
ory. Some addressing modes optionally enable the index register value to be shifted prior to the
addition or subtraction.

See also “Base register”
Instruction cycle count

The number of cycles that an instruction occupies the Execute stage of the pipeline.
Interrupt handler

A program that control of the processor is passed to when an interrupt occurs.
Interrupt vector

One of a number of fixed addresses in low memory, or in high memory if high vectors are config-
ured, that contains the first instruction of the corresponding interrupt handler.

Little-endian (LE)

Byte ordering scheme in which bytes of increasing significance in a data word are stored at
increasing addresses in memory.

See also “Little-endian memory” , “Endianness”
Little-endian memory
Memory in which:

a byte or halfword at a word-aligned address is the least significant byte or halfword within the
word at that address

a byte at a halfword-aligned address is the least significant byte within the halfword at that
address.

Load/store architecture

A processor architecture where data-processing operations only operate on register contents,
not directly on memory contents.

Memory Protection Unit (MPU)

Hardware that controls access permissions to blocks of memory. An MPU does not perform any
address translation.

Prefetching

In pipelined processors, the process of fetching instructions from memory to fill up the pipeline
before the preceding instructions have finished executing. Prefetching an instruction does not
mean that the instruction has to be executed.

AImEl@ 215

11057B-ATARM-28-May-12

Read

Region

Reserved

Should Be One (SBO)

Should Be Zero (SBZ)

ATMEL

Reads are defined as memory operations that have the semantics of a load. Reads include the
Thumb instructions LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

A partition of memory space.

A field in a control register or instruction format is reserved if the field is to be defined by the
implementation, or produces Unpredictable results if the contents of the field are not zero. These
fields are reserved for use in future extensions of the architecture or are implementation-specific.
All reserved bits not used by the implementation must be written as 0 and read as 0.

Write as 1, or all 1s for bit fields, by software. Writing as 0 produces Unpredictable results.

Write as 0, or all Os for bit fields, by software. Writing as 1 produces Unpredictable results.

Should Be Zero or Preserved (SBZP)

Thread-safe

Thumb instruction

Unaligned

Undefined

Unpredictable (UNP)

Warm reset

Word

Write as 0, or all Os for bit fields, by software, or preserved by writing the same value back that
has been previously read from the same field on the same processor.

In a multi-tasking environment, thread-safe functions use safeguard mechanisms when access-
ing shared resources, to ensure correct operation without the risk of shared access conflicts.

One or two halfwords that specify an operation for a processor to perform. Thumb instructions
must be halfword-aligned.

A data item stored at an address that is not divisible by the number of bytes that defines the data
size is said to be unaligned. For example, a word stored at an address that is not divisible by
four.

Indicates an instruction that generates an Undefined instruction exception.

You cannot rely on the behavior. Unpredictable behavior must not represent security holes.
Unpredictable behavior must not halt or hang the processor, or any parts of the system.

Also known as a core reset. Initializes the majority of the processor excluding the debug control-
ler and debug logic. This type of reset is useful if you are using the debugging features of a
processor.

A 32-bit data item.

216 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

Write

Writes are defined as operations that have the semantics of a store. Writes include the Thumb
instructions STM, STR, STRH, STRB, and PUSH.

AImEl@ 217

11057B-ATARM-28-May-12

ATMEL

218 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

13. Debug and Test Features

13.1 Description

The SAMS3 Series Microcontrollers feature a number of complementary debug and test
capabilities. The Serial Wire/JTAG Debug Port (SWJ-DP) combining a Serial Wire Debug Port
(SW-DP) and JTAG Debug (JTAG-DP) port is used for standard debugging functions, such as
downloading code and single-stepping through programs. It also embeds a serial wire trace.

13.2 Embedded Characteristics

» Debug access to all memory and registers in the system, including Cortex-M3 register bank
when the core is running, halted, or held in reset.

« Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access
« Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches

« Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data tracing, and
system profiling

« Instrumentation Trace Macrocell (ITM) for support of printf style debugging
* [IEEE1149.1 JTAG Boundary-can on All Digital Pins

Figure 13-1. Debug and Test Block Diagram

[]| Tvs

[]| rexiswerk

[]| o

Boundary SWJ-DP \L d I:l JTAGSEL

TAP
[|

TDO/TRACESWO

=

POR

Reset <
and

Test D TST

AImEl@ 219

11057B-ATARM-28-May-12

ATMEL

13.3 Application Examples

13.31 Debug Environment
Figure 13-2 shows a complete debug environment example. The SWJ-DP interface is used for

standard debugging functions, such as downloading code and single-stepping through the pro-
gram and viewing core and peripheral registers.

Figure 13-2. Application Debug Environment Example

/
Host Debugger
PC

SWJ-DP
Emulator/Probe

SWJ-DP
Connector

SAM3

SAM3-based Application Board

13.3.2 Test Environment
Figure 13-3 shows a test environment example (JTAG Boundary scan). Test vectors are sent

and interpreted by the tester. In this example, the “board in test” is designed using a number of
JTAG-compliant devices. These devices can be connected to form a single scan chain.

220 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

Figure 13-3. Application Test Environment Example

13.4 Debug and Test Pin Description

Test Adaptor
Tester
JTAG
Probe
JTAG .)
Connector Chip n Chip 2
I
SAM3-based Application Board In Test
Table 13-1. Debug and Test Signal List
Signal Name Function Type Active Level
Reset/Test
NRST Microcontroller Reset Input/Output Low
TST Test Select Input
SWD/ITAG
TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input
TDO/TRACESWO Test Data Out/Trace Asynchronous Output @
Data Out
TMS/SWDIO Test Mode Select/Serial Wire Input
Input/Output
JTAGSEL JTAG Selection Input High

Note: 1. TDO pinis setin input mode when the Cortex-M3 Core is not in debug mode. Thus the internal
pull-up corresponding to this PIO line must be enabled to avoid current consumption due to

floating input.

11057B-ATARM-28-May-12

ATMEL

221

ATMEL

13.5 Functional Description

1351

13.5.2

Test Pin

One dedicated pin, TST, is used to define the device operating mode. When this pin is at low
level during power-up, the device is in normal operating mode. When at high level, the device is
in test mode or FFPI mode. The TST pin integrates a permanent pull-down resistor of about 15
kQ, so that it can be left unconnected for normal operation. Note that when setting the TST pin to
low or high level at power up, it must remain in the same state during the duration of the whole
operation.

Debug Architecture

Figure 13-4 shows the Debug Architecture used in the SAM3. The Cortex-M3 embeds four func-
tional units for debug:

* SWJ-DP (Serial Wire/JTAG Debug Port)

* FPB (Flash Patch Breakpoint)

« DWT (Data Watchpoint and Trace)

* ITM (Instrumentation Trace Macrocell)

* TPIU (Trace Port Interface Unit)

The debug architecture information that follows is mainly dedicated to developers of SWJ-DP
Emulators/Probes and debugging tool vendors for Cortex M3-based microcontrollers. For further
details on SWJ-DP see the Cortex M3 technical reference manual.

Figure 13-4. Debug Architecture

DWT

4 watchpoints

PC sampler

data address sampler

data sampler

interrupt trace

CPU statistics

FPB
SWJ-DP
6 breakpoints
SWD/JTAG
IT™
software trace SWO trace
32 channels
TPIU
time stamping

13.5.3

222

Serial Wire/JTAG Debug Port (SWJ-DP)

The Cortex-M3 embeds a SWJ-DP Debug port which is the standard CoreSight™ debug port. It
combines Serial Wire Debug Port (SW-DP), from 2 to 3 pins and JTAG debug Port (JTAG-DP),
5 pins.

By default, the JTAG Debug Port is active. If the host debugger wants to switch to the Serial
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and
TCK/SWCLK which disables JTAG-DP and enables SW-DP.

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace. The asyn-
chronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace
can only be used with SW-DP, not JTAG-DP.

Table 13-2. SWJ-DP Pin List

Pin Name JTAG Port Serial Wire Debug Port
TMS/SWDIO T™MS SWDIO
TCK/SWCLK TCK SWCLK

TDI TDI -
TDO/TRACESWO TDO TRACESWO (optional: trace)

SW-DP or JTAG-DP mode is selected when JTAGSEL is low. It is not possible to switch directly
between SWJ-DP and JTAG boundary scan operations. A chip reset must be performed after
JTAGSEL is changed.

13.5.3.1 SW-DP and JTAG-DP Selection Mechanism

Debug port selection mechanism is done by sending specific SWDIOTMS sequence. The JTAG-
DP is selected by default after reset.

« Switch from JTAG-DP to SW-DP. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
— Send the 16-bit sequence on SWDIOTMS =0111100111100111 (0x79E7 MSB first)
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
» Switch from SWD to JTAG. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1

— Send the 16-bit sequence on SWDIOTMS = 0011110011100111 (Ox3CE7 MSB
first)

— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1

13.5.4 FPB (Flash Patch Breakpoint)
The FPB:
* Implements hardware breakpoints
« Patches code and data from code space to system space.
The FPB unit contains:
« Two literal comparators for matching against literal loads from Code space, and remapping to
a corresponding area in System space.

« Six instruction comparators for matching against instruction fetches from Code space and
remapping to a corresponding area in System space.

« Alternatively, comparators can also be configured to generate a Breakpoint instruction to the
processor core on a match.

13.5.5 DWT (Data Watchpoint and Trace)
The DWT contains four comparators which can be configured to generate the following:

* PC sampling packets at set intervals
« PC or Data watchpoint packets

AImEl@ 223

11057B-ATARM-28-May-12

ATMEL

« Watchpoint event to halt core
The DWT contains counters for the items that follow:

* Clock cycle (CYCCNT)

* Folded instructions

 Load Store Unit (LSU) operations

« Sleep Cycles

« CPI (all instruction cycles except for the first cycle)
* Interrupt overhead

13.5.6 ITM (Instrumentation Trace Macrocell)

The ITM is an application driven trace source that supports printf style debugging to trace Oper-
ating System (OS) and application events, and emits diagnostic system information. The ITM
emits trace information as packets which can be generated by three different sources with sev-
eral priority levels:

» Software trace: Software can write directly to ITM stimulus registers. This can be done
thanks to the “printf” function. For more information, refer to Section 13.5.6.1 “How to
Configure the ITM”.

* Hardware trace: The ITM emits packets generated by the DWT.

« Time stamping: Timestamps are emitted relative to packets. The ITM contains a 21-bit
counter to generate the timestamp.

13.5.6.1 How to Configure the ITM
The following example describes how to output trace data in asynchronous trace mode.

« Configure the TPIU for asynchronous trace mode (refer to Section 13.5.6.3 “5.4.3. How to
Configure the TPIU")

« Enable the write accesses into the ITM registers by writing “OXC5ACCES5” into the
Lock Access Register (Address: 0XEOOOOFBO)

» Write 0x00010015 into the Trace Control Register:
— Enable ITM
— Enable Synchronization packets
— Enable SWO behavior
— Fixthe ATB ID to 1
« Write Ox1 into the Trace Enable Register:
— Enable the Stimulus port 0
* Write Ox1 into the Trace Privilege Register:

— Stimulus port 0 only accessed in privileged mode (Clearing a bit in this register will
result in the corresponding stimulus port being accessible in user mode.)

« Write into the Stimulus port O register: TPIU (Trace Port Interface Unit)
The TPIU acts as a bridge between the on-chip trace data and the Instruction Trace Macro-
cell (ITM).

The TPIU formats and transmits trace data off-chip at frequencies asynchronous to the core.

224 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

13.5.6.2

13.5.6.3

13.5.7

135.7.1

11057B-ATARM-28-May-12

Asynchronous Mode
The TPIU is configured in asynchronous mode, trace data are output using the single TRAC-
ESWO pin. The TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port.
As a consequence, asynchronous trace mode is only available when the Serial Wire Debug
mode is selected since TDO signal is used in JTAG debug mode.

Two encoding formats are available for the single pin output:

* Manchester encoded stream. This is the reset value.
* NRZ_based UART byte structure

5.4.3. How to Configure the TPIU
This example only concerns the asynchronous trace mode.

« Set the TRCENA bit to 1 into the Debug Exception and Monitor Register (OXEOOOEDFC) to
enable the use of trace and debug blocks.
» Write 0x2 into the Selected Pin Protocol Register
— Select the Serial Wire Output — NRZ
« Write 0x100 into the Formatter and Flush Control Register

« Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the
baud rate of the asynchronous output (this can be done automatically by the debugging tool).

IEEE® 1149.1 JTAG Boundary Scan

IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging
technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when FWUP, NRSTB and JTAGSEL are high
while TST is tied low during power-up and must be kept in this state during the whole boundary
scan operation. VDDCORE must be externally supplied between 1.8V and 1.95V. The SAMPLE,
EXTEST and BYPASS functions are implemented. In SWD/JTAG debug mode, the ARM pro-
cessor responds with a non-JTAG chip ID that identifies the processor. This is not IEEE 1149.1
JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port opera-
tions. A chip reset must be performed after JTAGSEL is changed.

A Boundary-scan Descriptor Language (BSDL) file is provided on Atmel's web site to set up the
test.

JTAG Boundary-scan Register
The Boundary-scan Register (BSR) contains a number of bits which correspond to active pins
and associated control signals.

Each SAM3 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit con-
tains data that can be forced on the pad. The INPUT bit facilitates the observability of data
applied to the pad. The CONTROL bit selects the direction of the pad.

For more information, please refer to BDSL files available for the SAM3 Series.

AImEl@ 225

13.5.8 ID Code Register
Access: Read-only

31 30 29 28 27 26 25 24
| VERSION PART NUMBER
23 22 21 20 19 18 17 16

| PART NUMBER

15 14 13 12 11 10 9 8
| PART NUMBER MANUFACTURER IDENTITY

7 6 5 4 3 2 1 0
| MANUFACTURER IDENTITY 1

» VERSION[31:28]: Product Version Number
Set to 0x0.

 PART NUMBER[27:12]: Product Part Number

Chip Name Chip ID

SAM3X 0x05B2B

* MANUFACTURER IDENTITY[11:1]
Set to OxO1F.

. Bit[0] Required by IEEE Std. 1149.1.

Set to Ox1.
Chip Name JTAG ID Code
SAM3X 0x05B2BO3F
226 SAM3X/A |

11057B-ATARM-28-May-12

s S A VI3 X/A

14. Reset Controller (RSTC)

14.1 Description
The Reset Controller (RSTC), based on power-on reset cells, handles all the resets of the sys-
tem without any external components. It reports which reset occurred last.

The Reset Controller also drives independently or simultaneously the external reset and the
peripheral and processor resets.

14.2 Embedded Characteristics
« Manages all Resets of the System, Including
— External Devices through the NRST Pin
— Processor Reset
— Peripheral Set Reset
» Based on Embedded Power-on Cell
* Reset Source Status
— Status of the Last Reset
— Either Software Reset, User Reset, Watchdog Reset
« External Reset Signal Shaping
« AMBA™-compliant Interface
— Interface to the ARM® Advanced Peripheral Bus

14.3 Block Diagram

Figure 14-1. Reset Controller Block Diagram

Reset Controller

core_backup_reset >

—— rstc_irq

vddcore_nreset

Reset > proc_nreset
user_reset State
NRST Manager
D NRST > periph_nreset
Manager
nrst_out
— exter_nreset

WDRPROC

wd_fault

Y

SLCK

AImEl@ 227

11057B-ATARM-28-May-12

ATMEL

14.4 Functional Description

14.4.1 Reset Controller Overview
The Reset Controller is made up of an NRST Manager and a Reset State Manager. It runs at

Slow Clock and generates the following reset signals:
« proc_nreset: Processor reset line. It also resets the Watchdog Timer.
« periph_nreset: Affects the whole set of embedded peripherals.
« nrst_out: Drives the NRST pin.

These reset signals are asserted by the Reset Controller, either on external events or on soft-
ware action. The Reset State Manager controls the generation of reset signals and provides a
signal to the NRST Manager when an assertion of the NRST pin is required.

The NRST Manager shapes the NRST assertion during a programmable time, thus controlling
external device resets.

The Reset Controller Mode Register (RSTC_MR), allowing the configuration of the Reset Con-
troller, is powered with VDDIO, so that its configuration is saved as long as VDDIO is on.

14.4.2 NRST Manager
After power-up, NRST is an output during the ERSTL time period defined in the RSTC_MR.
When ERSTL has elapsed, the pin behaves as an input and all the system is held in reset if
NRST is tied to GND by an external signal.

The NRST Manager samples the NRST input pin and drives this pin low when required by the
Reset State Manager. Figure 14-2 shows the block diagram of the NRST Manager.

Figure 14-2. NRST Manager

RSTC_MR

RSTC SR URSTIEN

URSTS

—> rstc_irg
NRSTL | rsTC_MR other [2
URSTEN interrupt
sources
4| . > user_reset

NRST RSTC_MR
Dﬁ ERSTL
| nrst_out

I External Reset Timer fje————— exter_nreset

14421 NRST Signal or Interrupt
The NRST Manager samples the NRST pin at Slow Clock speed. When the line is detected low,
a User Reset is reported to the Reset State Manager.

However, the NRST Manager can be programmed to not trigger a reset when an assertion of
NRST occurs. Writing the bit URSTEN at 0 in RSTC_MR disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in RSTC_SR.
As soon as the pin NRST is asserted, the bit URSTS in RSTC_SR is set. This bit clears only
when RSTC_SR is read.

228 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

The Reset Controller can also be programmed to generate an interrupt instead of generating a
reset. To do so, the bit URSTIEN in RSTC_MR must be written at 1.

14.4.2.2 NRST External Reset Control

The Reset State Manager asserts the signal ext_nreset to assert the NRST pin. When this
occurs, the “nrst_out” signal is driven low by the NRST Manager for a time programmed by the
field ERSTL in RSTC_MR. This assertion duration, named EXTERNAL_RESET LENGTH, lasts
2ERSTLH) glow Clock cycles. This gives the approximate duration of an assertion between 60 ps
and 2 seconds. Note that ERSTL at O defines a two-cycle duration for the NRST pulse.

This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that
the NRST line is driven low for a time compliant with potential external devices connected on the
system reset.

As the ERSTL field is within RSTC_MR register, which is backed-up, it can be used to shape the
system power-up reset for devices requiring a longer startup time than the Slow Clock Oscillator.

14.4.3 Brownout Manager

14.4.4 Reset States

The Brownout manager is embedded within the Supply Controller, please refer to the product
Supply Controller section for a detailed description.

The Reset State Manager handles the different reset sources and generates the internal reset
signals. It reports the reset status in the field RSTTYP of the Status Register (RSTC_SR). The
update of the field RSTTYP is performed when the processor reset is released.

14.4.4.1 General Reset

11057B-ATARM-28-May-12

A general reset occurs when a Power-on-reset is detected, an Asynchronous Master Reset
(NRSTB pin) is requested, a Brownout or a Voltage regulation loss is detected by the Supply
controller. The vddcore_nreset signal is asserted by the Supply Controller when a general reset
occurs.

All the reset signals are released and the field RSTTYP in RSTC_SR reports a General Reset.
As the RSTC_MR is reset, the NRST line rises 2 cycles after the vddcore_nreset, as ERSTL
defaults at value 0x0.

Figure 14-3 shows how the General Reset affects the reset signals.

AImEl@ 229

ATMEL

Figure 14-3. General Reset State

SLCK I 1 I | | | | | |_|_|_U

MCK

backup_nreset

proc_nreset

RSTTYP XXX 0x0 = General Reset XXX

periph_nreset

NRST
(nrst_out)

)
)
P S % %
(
)
)
)

<

EXTERNAL RESET LENGTH
=2 cycles

Y

14.4.4.2 Backup Reset

A Backup reset occurs when the chip returns from Backup mode. The core_backup_reset signal
is asserted by the Supply Controller when a Backup reset occurs.

The field RSTTYP in RSTC_SR is updated to report a Backup Reset.

14.4.4.3 User Reset
The User Reset is entered when a low level is detected on the NRST pin and the bit URSTEN in
RSTC_MR is at 1. The NRST input signal is resynchronized with SLCK to insure proper behav-
ior of the system.

The User Reset is entered as soon as a low level is detected on NRST. The Processor Reset
and the Peripheral Reset are asserted.

The User Reset is left when NRST rises, after a two-cycle resynchronization time and a 3-cycle
processor startup. The processor clock is re-enabled as soon as NRST is confirmed high.

When the processor reset signal is released, the RSTTYP field of the Status Register
(RSTC_SR) is loaded with the value 0x4, indicating a User Reset.

The NRST Manager guarantees that the NRST line is asserted for
EXTERNAL_RESET_LENGTH Slow Clock cycles, as programmed in the field ERSTL. How-
ever, if NRST does not rise after EXTERNAL_RESET_LENGTH because it is driven low
externally, the internal reset lines remain asserted until NRST actually rises.

230 S A M 3XI A ___|]
11057B-ATARM-28-May-12

SAM3X/A

Figure 14-4. User Reset State

see L[Loy e
MeK o gEpEpERE
NRST /

Resynch. Resynch. Processor Startup
2 cycles 2 cycles =2 cycles
proc_nreset /
RSTTYP Any XXX 0x4 = User Reset
periph_nreset
NRST /
(nrst_out)

>

>= EXTERNAL RESET LENGTH

<
<

14.4.4.4 Software Reset

The Reset Controller offers several commands used to assert the different reset signals. These
commands are performed by writing the Control Register (RSTC_CR) with the following bits at
1:

*« PROCRST: Writing PROCRST at 1 resets the processor and the watchdog timer.

* PERRST: Writing PERRST at 1 resets all the embedded peripherals, including the memory
system, and, in particular, the Remap Command. The Peripheral Reset is generally used for
debug purposes.

Except for debug purposes, PERRST must always be used in conjunction with PROCRST
(PERRST and PROCRST set both at 1 simultaneously).

« EXTRST: Writing EXTRST at 1 asserts low the NRST pin during a time defined by the field
ERSTL in the Mode Register (RSTC_MR).

The software reset is entered if at least one of these bits is set by the software. All these com-
mands can be performed independently or simultaneously. The software reset lasts 3 Slow
Clock cycles.

The internal reset signals are asserted as soon as the register write is performed. This is
detected on the Master Clock (MCK). They are released when the software reset is left, i.e.; syn-
chronously to SLCK.

If EXTRST is set, the nrst_out signal is asserted depending on the programming of the field
ERSTL. However, the resulting falling edge on NRST does not lead to a User Reset.

If and only if the PROCRST bit is set, the Reset Controller reports the software status in the field
RSTTYP of the Status Register (RSTC_SR). Other Software Resets are not reported in
RSTTYP.

AImEl@ 231

11057B-ATARM-28-May-12

ATMEL

As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Prog-
ress) is set in the Status Register (RSTC_SR). It is cleared as soon as the software reset is left.
No other software reset can be performed while the SRCMP bit is set, and writing any value in
RSTC_CR has no effect.

Figure 14-5. Software Reset

SLCK

MCK

Write RSTC_CR

proc_nreset
if PROCRST=1

RSTTYP

periph_nreset
if PERRST=1

NRST
(nrst_out)
if EXTRST=1

SRCMP in RSTC_SR

L L

Any
Freq.
Resynch|Processor Startup|
1 cycle =2 cycles
Any XXX 0x3 = Software Reset

S S XK A<D
N

A
A

EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

Y

S

14.4.45 Watchdog Reset

The Watchdog Reset is entered when a watchdog fault occurs. This state lasts 3 Slow Clock
cycles.

When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in
WDT_MR;:

« If WDRPROC is 0, the Processor Reset and the Peripheral Reset are asserted. The NRST
line is also asserted, depending on the programming of the field ERSTL. However, the
resulting low level on NRST does not result in a User Reset state.

 If WDRPROC = 1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a
processor reset if WDRSTEN is set, the Watchdog Timer is always reset after a Watchdog
Reset, and the Watchdog is enabled by default and with a period set to a maximum.

When the WDRSTEN in WDT_MR bit is reset, the watchdog fault has no impact on the reset
controller.

232 SAM X A e ——————— e —

11057B-ATARM-28-May-12

SAM3X/A

Figure 14-6. Watchdog Reset

see LTI L L LWL L
[L
N

Any
MCK Freq.

1]

wd_fault /—

Processor Startup|
2cycles

proc_nreset /

RSTTYP Any XXX 0x2 = Watchdog Reset

periph_nreset

Only if
WDRPROC =0

NRST
(nrst_out)

A
A

I EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

14.45 Reset State Priorities
The Reset State Manager manages the following priorities between the different reset sources,
given in descending order:
* General Reset
» Backup Reset
« Watchdog Reset
» Software Reset
* User Reset
Particular cases are listed below:

* When in User Reset:

— A watchdog event is impossible because the Watchdog Timer is being reset by the
proc_nreset signal.

— A software reset is impossible, since the processor reset is being activated.
* When in Software Reset:
— A watchdog event has priority over the current state.
— The NRST has no effect.
* When in Watchdog Reset:
— The processor reset is active and so a Software Reset cannot be programmed.
— A User Reset cannot be entered.

14.4.6 Reset Controller Status Register
The Reset Controller status register (RSTC_SR) provides several status fields:

* RSTTYP field: This field gives the type of the last reset, as explained in previous sections.

AImEl@ 233

11057B-ATARM-28-May-12

ATMEL

« SRCMP bit: This field indicates that a Software Reset Command is in progress and that no
further software reset should be performed until the end of the current one. This bit is
automatically cleared at the end of the current software reset.

* NRSTL bit: The NRSTL bit of the Status Register gives the level of the NRST pin sampled on
each MCK rising edge.

« URSTS bit: A high-to-low transition of the NRST pin sets the URSTS bit of the RSTC_SR
register. This transition is also detected on the Master Clock (MCK) rising edge (see Figure
14-7). If the User Reset is disabled (URSTEN = 0) and if the interruption is enabled by the
URSTIEN bit in the RSTC_MR register, the URSTS bit triggers an interrupt. Reading the
RSTC_SR status register resets the URSTS bit and clears the interrupt.

Figure 14-7. Reset Controller Status and Interrupt

read
Peripheral Access RSTC SR
2 cycle 2 cycle

resync¢hronizatipn resynchionizatiory

NRST —\/_,_\ /———\
NRSTL

URSTS /
rstc_irq
if (URSTEN = 0) and
(URSTIEN = 1) -~
234 S A M 3X/ A |

11057B-ATARM-28-May-12

s S A VI3 X/A

14.5 Reset Controller (RSTC) User Interface

Table 14-1. Register Mapping
Offset Register Name Access Reset
0x00 Control Register RSTC_CR Write-only -
0x04 Status Register RSTC_SR Read-only 0x0000_0000
0x08 Mode Register RSTC_MR Read-write 0x0000 0001

11057B-ATARM-28-May-12

ATMEL

235

145.1 Reset Controller Control Register
Name: RSTC_CR

Address: Ox400E1A00

ATMEL

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | — | - | — | EXTRST | PERRST - | PROCRST |

Should be written at value OxA5. Writing any other value in this field aborts the write operation.

236

PROCRST: Processor Reset

: No effect.

. If KEY is correct, resets the processor.

PERRST: Peripheral Reset

: No effect.

. If KEY is correct, resets the peripherals.

EXTRST: External Reset

: No effect.

. If KEY is correct, asserts the NRST pin.

KEY: Password

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

14.5.2 Reset Controller Status Register
Name: RSTC_SR

Address: Ox400E1A04

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | SRCMP NRSTL |
15 14 13 12 11 10 9 8

I - I - I - I - I - I RSTTYP |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - - URSTS |

* URSTS: User Reset Status
0: No high-to-low edge on NRST happened since the last read of RSTC_SR.

1: At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

* RSTTYP: Reset Type
Reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.

RSTTYP Reset Type Comments
0 0 0 General Reset First power-up Reset
0 0 1 Backup Reset Return from Backup mode
0 1 0 Watchdog Reset Watchdog fault occurred
0 1 1 Software Reset Processor reset required by the software
1 0 0 User Reset NRST pin detected low

* NRSTL: NRST Pin Level
Registers the NRST Pin Level at Master Clock (MCK).

» SRCMP: Software Reset Command in Progress

0: No software command is being performed by the reset controller. The reset controller is ready for a software command.

1: A software reset command is being performed by the reset controller. The reset controller is busy.

ATMEL

11057B-ATARM-28-May-12

237

ATMEL

14.5.3 Reset Controller Mode Register

Name: RSTC_MR

Address: 0x400E1A08

Access: Read-write
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

- T - G R R - - —
15 14 13 12 11 10 9 8

| - | - - | - | ERSTL |
7 6 5 4 3 2 1 0

| - | - | URSTIEN | - - - URSTEN |

 URSTEN: User Reset Enable
0: The detection of a low level on the pin NRST does not generate a User Reset.

1: The detection of a low level on the pin NRST triggers a User Reset.

* URSTIEN: User Reset Interrupt Enable

0: USRTS bhit in RSTC_SR at 1 has no effect on rstc_irqg.

1: USRTS bitin RSTC_SR at 1 asserts rstc_irq if URSTEN = 0.

» ERSTL: External Reset Length

This field defines the external reset length. The external reset is asserted during a time of 2ERSTH*D Slow Clock cycles. This
allows assertion duration to be programmed between 60 ps and 2 seconds.

» KEY: Password

Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

238

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

15. Real-time Timer (RTT)

15.1 Description

The Real-time Timer is built around a 32-bit counter used to count roll-over events of the pro-
grammable 16-bit prescaler which enables counting elapsed seconds from a 32 kHz slow clock
source. It generates a periodic interrupt and/or triggers an alarm on a programmed value.

15.2 Embedded Characteristics

 32-bit Free-running Counter on prescaled slow clock
« 16-bit Configurable Prescaler
* Interrupt on Alarm

15.3 Block Diagram

Figure 15-1. Real-time Timer

RTT_MR RTT_MR

RTTRST | | RTPRES

RTT_MR

reload
SLeK 16-bit

Divider

RTTINCIEN

0 set

RTT_MR l RTT_SR | RTTINC ||
RTTRST |—A\1 0 / reset
|
rtt_int

32-bit D—>
> Counter read !
RTT_SR RTT_MR

ALMIEN

RTT_VR | CRTV | reset
RTT_SR ALMS |

> set

RTT_AR ALMV

rtt_alarm

= >

15.4 Functional Description

11057B-ATARM-28-May-12

The Real-time Timer can be used to count elapsed seconds. It is built around a 32-bit counter
fed by Slow Clock divided by a programmable 16-bit value. The value can be programmed in the
field RTPRES of the Real-time Mode Register (RTT_MR).

Programming RTPRES at 0x00008000 corresponds to feeding the real-time counter with a 1 Hz
signal (if the Slow Clock is 32.768 kHz). The 32-bit counter can count up to 232 seconds, corre-
sponding to more than 136 years, then roll over to 0.

The Real-time Timer can also be used as a free-running timer with a lower time-base. The best
accuracy is achieved by writing RTPRES to 3. Programming RTPRES to 1 or 2 is possible, but

AImEl@ 239

ATMEL

may result in losing status events because the status register is cleared two Slow Clock cycles
after read. Thus if the RTT is configured to trigger an interrupt, the interrupt occurs during 2 Slow
Clock cycles after reading RTT_SR. To prevent several executions of the interrupt handler, the
interrupt must be disabled in the interrupt handler and re-enabled when the status register is
clear.

The Real-time Timer value (CRTV) can be read at any time in the register RTT_VR (Real-time
Value Register). As this value can be updated asynchronously from the Master Clock, it is advis-
able to read this register twice at the same value to improve accuracy of the returned value.

The current value of the counter is compared with the value written in the alarm register
RTT_AR (Real-time Alarm Register). If the counter value matches the alarm, the bit ALMS in
RTT_SR is set. The alarm register is set to its maximum value, corresponding to OXFFFF_FFFF,
after a reset.

The bit RTTINC in RTT_SR is set each time the Real-time Timer counter is incremented. This bit
can be used to start a periodic interrupt, the period being one second when the RTPRES is pro-
grammed with 0x8000 and Slow Clock equal to 32.768 Hz.

Reading the RTT_SR status register resets the RTTINC and ALMS fields.

Writing the bit RTTRST in RTT_MR immediately reloads and restarts the clock divider with the
new programmed value. This also resets the 32-bit counter.

Note: Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK):
1) The restart of the counter and the reset of the RTT_VR current value register is effective only 2
slow clock cycles after the write of the RTTRST bit in the RTT_MR register.
2) The status register flags reset is taken into account only 2 slow clock cycles after the read of the
RTT_SR (Status Register).

Figure 15-2. RTT Counting

240

RTPRES -1

Prescaler / / /
L

APB cycle APB cycle
<> <>

<o (WUUUUUUUTTUUUTTUUTUUTUYL

0

RTT 0 ALMV{L | X ALMV [XALMV+1 | X ALMV+2 <ALM +3

RTTINC (RTT_SR) /

ALMS (RTT_SR)

/

APB Interface

S A M X A ——— e —

read RTT_SR

s S A VI3 X/A

15.5 Real-time Timer (RTT) User Interface

Table 15-1. Register Mapping
Offset Register Name Access Reset
0x00 Mode Register RTT_MR Read-write 0x0000_8000
0x04 Alarm Register RTT_AR Read-write OxFFFF_FFFF
0x08 Value Register RTT_VR Read-only 0x0000_0000
0x0C Status Register RTT_SR Read-only 0x0000_0000

11057B-ATARM-28-May-12

ATMEL

241

155.1 Real-time Timer Mode Register
Name: RTT_MR

Address: Ox400E1A30

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I -
23 22 21 20 19 18 17 16

| - | - | - | - | - | RTTRST | RTTINCIEN | ALMIEN
15 14 13 12 11 10 9 8

| RTPRES
7 6 5 4 3 2 1 0

| RTPRES

* RTPRES: Real-time Timer Prescaler Value
Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:

RTPRES = 0: The prescaler period is equal to 2! * SCLK period.
RTPRES # 0: The prescaler period is equal to RTPRES * SCLK period.
* ALMIEN: Alarm Interrupt Enable

0 = The bit ALMS in RTT_SR has no effect on interrupt.

1 =The bit ALMS in RTT_SR asserts interrupt.

» RTTINCIEN: Real-time Timer Increment Interrupt Enable

0 = The bit RTTINC in RTT_SR has no effect on interrupt.

1 =The bit RTTINC in RTT_SR asserts interrupt.

* RTTRST: Real-time Timer Restart

0 = No effect.

1 = Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.

242 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

15.5.2 Real-time Timer Alarm Register
Name: RTT_AR
Address: 0x400E1A34
Access: Read-write
31 30 29 28 27 26 25 24
| ALMV |
23 22 21 20 19 18 17 16
| ALMV |
15 14 13 12 11 10 9 8
| ALMV |
7 6 5 4 3 2 1 0
| ALMV |
e ALMV: Alarm Value
Defines the alarm value (ALMV+1) compared with the Real-time Timer.
ATMEL 243
Y 5

11057B-ATARM-28-May-12

15.5.3 Real-time Timer Value Register
Name: RTT_VR

Address: Ox400E1A38

Access: Read-only
31 30 29 28 27 26 25 24

| CRTV |
23 22 21 20 19 18 17 16

| CRTV |
15 14 13 12 11 10 9 8

| CRTV |
7 6 5 4 3 2 1 0

| CRTV |

e CRTV: Current Real-time Value
Returns the current value of the Real-time Timer.

244 S AM EX A e ————————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

1554 Real-time Timer Status Register
Name: RTT_SR

Address: Ox400E1A3C

Access: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| — | — | - | — | — | — | RTTINC | ALMS |
* ALMS: Real-time Alarm Status
0 = The Real-time Alarm has not occurred since the last read of RTT_SR.
1 = The Real-time Alarm occurred since the last read of RTT_SR.
* RTTINC: Real-time Timer Increment
0 = The Real-time Timer has not been incremented since the last read of the RTT_SR.
1 = The Real-time Timer has been incremented since the last read of the RTT_SR.
ATMEL 245
Y 5

11057B-ATARM-28-May-12

ATMEL

246 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

16. Real-time Clock (RTC)

16.1 Description
The Real-time Clock (RTC) peripheral is designed for very low power consumption.

It combines a complete time-of-day clock with alarm and a two-hundred-year Gregorian calen-
dar, complemented by a programmable periodic interrupt. The alarm and calendar registers are
accessed by a 32-bit data bus.

The time and calendar values are coded in binary-coded decimal (BCD) format. The time format
can be 24-hour mode or 12-hour mode with an AM/PM indicator.

Updating time and calendar fields and configuring the alarm fields are performed by a parallel
capture on the 32-bit data bus. An entry control is performed to avoid loading registers with
incompatible BCD format data or with an incompatible date according to the current
month/year/century.

16.2 Embedded Characteristics
« Low Power Consumption
* Full Asynchronous Design
« Two Hundred Year Gregorian Calendar
« Programmable Periodic Interrupt
» Time, Date and Alarm 32-bit Parallel Load
* Write Protected Registers

16.3 Block Diagram

Figure 16-1. RTC Block Diagram

Slow Clock: SLCK 32768 Divider Time Date
Bus Interface <@ Bus Interface |« % % >
Entry Interrupt RTC Interrupt
Control Control

16.4 Product Dependencies

16.4.1 Power Management
The Real-time Clock is continuously clocked at 32768 Hz. The Power Management Controller
has no effect on RTC behavior.

16.4.2 Interrupt
RTC interrupt line is connected on one of the internal sources of the interrupt controller. RTC
interrupt requires the interrupt controller to be programmed first.

AImEl@ 247

11057B-ATARM-28-May-12

ATMEL

16.5 Functional Description

16.5.1

16.5.2

16.5.3

16.5.4

248

The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year
(with leap years), month, date, day, hours, minutes and seconds.

The valid year range is 1900 to 2099 in Gregorian mode, a two-hundred-year calendar.
The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.

Corrections for leap years are included (all years divisible by 4 being leap years). This is correct
up to the year 2099.

Reference Clock

Timing

Alarm

The reference clock is Slow Clock (SLCK). It can be driven internally or by an external 32.768
kHz crystal.

During low power modes of the processor, the oscillator runs and power consumption is critical.
The crystal selection has to take into account the current consumption for power saving and the
frequency drift due to temperature effect on the circuit for time accuracy.

The RTC is updated in real time at one-second intervals in normal mode for the counters of sec-
onds, at one-minute intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain
that the value read in the RTC registers (century, year, month, date, day, hours, minutes, sec-
onds) are valid and stable, it is necessary to read these registers twice. If the data is the same
both times, then it is valid. Therefore, a minimum of two and a maximum of three accesses are
required.

The RTC has five programmable fields: month, date, hours, minutes and seconds.
Each of these fields can be enabled or disabled to match the alarm condition:
« If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted
and an interrupt generated if enabled) at a given month, date, hour/minute/second.
« If only the “seconds” field is enabled, then an alarm is generated every minute.

Depending on the combination of fields enabled, a large nhumber of possibilities are available to
the user ranging from minutes to 365/366 days.

Error Checking

Verification on user interface data is performed when accessing the century, year, month, date,
day, hours, minutes, seconds and alarms. A check is performed on illegal BCD entries such as
illegal date of the month with regard to the year and century configured.

If one of the time fields is not correct, the data is not loaded into the register/counter and a flag is
set in the validity register. The user can not reset this flag. It is reset as soon as an acceptable
value is programmed. This avoids any further side effects in the hardware. The same procedure
is done for the alarm.

The following checks are performed:

1. Century (check if itis in range 19 - 20)
2. Year (BCD entry check)

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

Date (check range 01 - 31)
Month (check if it is in BCD range 01 - 12, check validity regarding “date”)
Day (check range 1 - 7)

Hour (BCD checks: in 24-hour mode, check range 00 - 23 and check that AM/PM flag is
not set if RTC is set in 24-hour mode; in 12-hour mode check range 01 - 12)

7. Minute (check BCD and range 00 - 59)
8. Second (check BCD and range 00 - 59)

Note: If the 12-hour mode is selected by means of the RTC_MODE register, a 12-hour value can be pro-
grammed and the returned value on RTC_TIME will be the corresponding 24-hour value. The
entry control checks the value of the AM/PM indicator (bit 22 of RTC_TIME register) to determine
the range to be checked.

o 0 kA w

16.5.5 Updating Time/Calendar

11057B-ATARM-28-May-12

To update any of the time/calendar fields, the user must first stop the RTC by setting the corre-
sponding field in the Control Register. Bit UPDTIM must be set to update time fields (hour,
minute, second) and bit UPDCAL must be set to update calendar fields (century, year, month,
date, day).

Then the user must poll or wait for the interrupt (if enabled) of bit ACKUPD in the Status Regis-
ter. Once the bit reads 1, it is mandatory to clear this flag by writing the corresponding bit in
RTC_SCCR. The user can now write to the appropriate Time and Calendar register.

Once the update is finished, the user must reset (0) UPDTIM and/or UPDCAL in the Control

When entering programming mode of the calendar fields, the time fields remain enabled. When
entering the programming mode of the time fields, both time and calendar fields are stopped.
This is due to the location of the calendar logic circuity (downstream for low-power consider-
ations). It is highly recommended to prepare all the fields to be updated before entering
programming mode. In successive update operations, the user must wait at least one second
after resetting the UPDTIM/UPDCAL bit in the RTC_CR (Control Register) before setting these
bits again. This is done by waiting for the SEC flag in the Status Register before setting
UPDTIM/UPDCAL bit. After resetting UPDTIM/UPDCAL, the SEC flag must also be cleared.

AImEl@ 249

Figure 16-2. Update Sequence
Begin

Prepare TIme or Calendar Fields

Set UPDTIM and/or UPDCAL
bit(s) in RTC_CR

<€
Read RTC_SR
Polling or
IRQ (if enabled)
ACKUPD No
=1°?
Yes

Clear ACKUPD bit in RTC_SCCR

Update Time and/or Calendar values in
RTC_TIMR/RTC_CALR

Clear UPDTIM and/or UPDCAL bit in
RTC _CR

End

250 S A M SX/ A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

16.6 Real-time Clock (RTC) User Interface

Table 16-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register RTC_CR Read-write 0x0
0x04 Mode Register RTC_MR Read-write 0x0
0x08 Time Register RTC_TIMR Read-write 0x0
0x0C Calendar Register RTC_CALR Read-write 0x01210720
0x10 Time Alarm Register RTC_TIMALR Read-write 0x0
0x14 Calendar Alarm Register RTC_CALALR Read-write 0x01010000
0x18 Status Register RTC_SR Read-only 0x0
0x1C Status Clear Command Register RTC_SCCR Write-only -
0x20 Interrupt Enable Register RTC_IER Write-only -
0x24 Interrupt Disable Register RTC_IDR Write-only -
0x28 Interrupt Mask Register RTC_IMR Read-only 0x0
0x2C Valid Entry Register RTC_VER Read-only 0x0

0x30-0xEO Reserved Register - - -
OXE4 Write Protect Mode Register RTC_WPMR Read-write 0x00000000

OXE8-0xF8 Reserved Register - - -
OxFC Reserved Register - - -

Note: if an offset is not listed in the table it must be considered as reserved.

11057B-ATARM-28-May-12

ATMEL

251

ATMEL

16.6.1 RTC Control Register

Name: RTC_CR

Address: 0x400E1A60

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

| - | - | — | - | - | - | CALEVSEL |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - [TIMEVSEL |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | upbcaL | upDTIVM |

This register can only be written if the WPEN bit is cleared in “RTC Write Protect Mode Register” on page 265.

e UPDTIM: Update Request Time Register

0: No effect.

1: Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and
acknowledged by the bit ACKUPD of the Status Register.

 UPDCAL: Update Request Calendar Register

0: No effect.

1: Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once

this bit is set.

« TIMEVSEL: Time Event Selection
The event that generates the flag TIMEV in RTC_SR (Status Register) depends on the value of TIMEVSEL.

Value Name Description
0 MINUTE Minute change
1 HOUR Hour change
2 MIDNIGHT Every day at midnight
3 NOON Every day at noon
o CALEVSEL: Calendar Event Selection

The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL

Value

Name

Description

0

WEEK

Week change (every Monday at time 00:00:00)

252 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

Value Name Description
1 MONTH Month change (every 01 of each month at time 00:00:00)
2 YEAR Year change (every January 1 at time 00:00:00)
3 —

11057B-ATARM-28-May-12

ATMEL

253

16.6.2 RTC Mode Register
Name: RTC_MR

Address: Ox400E1A64

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - | HRmOD |

« HRMOD: 12-/24-hour Mode
0: 24-hour mode is selected.

1: 12-hour mode is selected.

All non-significant bits read zero.

254 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

16.6.3 RTC Time Register
Name: RTC_TIMR

Address: Ox400E1A68

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - - - - - - |
23 22 21 20 19 18 17 16

| — [avpm | HOUR |
15 14 13 12 11 10 9 8

| - | MIN |
7 6 5 4 3 2 1 0

| - | SEC |

» SEC: Current Second
The range that can be setis 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.
* MIN: Current Minute

The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

* HOUR: Current Hour
The range that can be setis 1 - 12 (BCD) in 12-hour mode or 0 - 23 (BCD) in 24-hour mode.

« AMPM: Ante Meridiem Post Meridiem Indicator
This bit is the AM/PM indicator in 12-hour mode.
0: AM.

1: PM.

All non-significant bits read zero.

AImEl@ 255

11057B-ATARM-28-May-12

16.6.4 RTC Calendar Register
Name: RTC_CALR

Address: Ox400E1A6C

Access: Read-write
31 30 29 28 27 26 25 24

| — | _ DATE |
23 22 21 20 19 18 17 16

| DAY MONTH |
15 14 13 12 11 10 9 8

| YEAR |
7 6 5 4 3 2 1 0

| - | CENT |

» CENT: Current Century
The range that can be set is 19 - 20 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.
* YEAR: Current Year
The range that can be set is 00 - 99 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

* MONTH: Current Month

The range that can be set is 01 - 12 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

« DAY: Current Day in Current Week

The range that can be setis 1 - 7 (BCD).

The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.
» DATE: Current Day in Current Month

The range that can be set is 01 - 31 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

All non-significant bits read zero.

256 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

16.6.5 RTC Time Alarm Register
Name: RTC_TIMALR

Address: Ox400E1A70

Access: Read-write
31 30 29 28 27 26 25 24

- T - 1 - - - - - S
23 22 21 20 19 18 17 16

| HOUREN | Ampm | HOUR |
15 14 13 12 11 10 9 8

[MINEN | MIN |
7 6 5 4 3 2 1 0

[SECEN | SEC |

This register can only be written if the WPEN bit is cleared in “RTC Write Protect Mode Register” on page 265.

» SEC: Second Alarm
This field is the alarm field corresponding to the BCD-coded second counter.

» SECEN: Second Alarm Enable
0: The second-matching alarm is disabled.
1: The second-matching alarm is enabled.

* MIN: Minute Alarm
This field is the alarm field corresponding to the BCD-coded minute counter.

* MINEN: Minute Alarm Enable
0: The minute-matching alarm is disabled.
1. The minute-matching alarm is enabled.

« HOUR: Hour Alarm
This field is the alarm field corresponding to the BCD-coded hour counter.

« AMPM: AM/PM Indicator
This field is the alarm field corresponding to the BCD-coded hour counter.

« HOUREN: Hour Alarm Enable
0: The hour-matching alarm is disabled.

1: The hour-matching alarm is enabled.

AImEl@ 257

11057B-ATARM-28-May-12

16.6.6 RTC Calendar Alarm Register
Name: RTC_CALALR

Address: Ox400E1A74

Access: Read-write
31 30 29 28 27 26 25 24

| DATEEN | - | DATE |
23 22 21 20 19 18 17 16

[MTHEN | — | — | MONTH |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | - | - |
7 6 5 4 3 2 1 0

This register can only be written if the WPEN bit is cleared in “RTC Write Protect Mode Register” on page 265.

* MONTH: Month Alarm
This field is the alarm field corresponding to the BCD-coded month counter.

 MTHEN: Month Alarm Enable
0: The month-matching alarm is disabled.
1: The month-matching alarm is enabled.

+ DATE: Date Alarm
This field is the alarm field corresponding to the BCD-coded date counter.

» DATEEN: Date Alarm Enable
0: The date-matching alarm is disabled.

1. The date-matching alarm is enabled.

258 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

16.6.7 RTC Status Register
Name: RTC_SR

Address: Ox400E1A78

Access: Read-only
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | - | - |
7 6 5 4 3 2 1 0

| - | - | - | catev | TimMEv | SEC | ALARM | AckupD |

0:
1:

ACKUPD: Acknowledge for Update

: Time and calendar registers cannot be updated.

: Time and calendar registers can be updated.

ALARM: Alarm Flag

: No alarm matching condition occurred.

: An alarm matching condition has occurred.

SEC: Second Event

: No second event has occurred since the last clear.

: At least one second event has occurred since the last clear.

TIMEV: Time Event
No time event has occurred since the last clear.

At least one time event has occurred since the last clear.

The time event is selected in the TIMEVSEL field in RTC_CR (Control Register) and can be any one of the following
events: minute change, hour change, noon, midnight (day change).

0:
1:

CALEV: Calendar Event
No calendar event has occurred since the last clear.

At least one calendar event has occurred since the last clear.

The calendar event is selected in the CALEVSEL field in RTC_CR and can be any one of the following events: week
change, month change and year change.

11057B-ATARM-28-May-12

ATMEL

259

16.6.8 RTC Status Clear Command Register
Name: RTC_SCCR

Address: Ox400E1A7C

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

[— [- | - | cAlclR | TMCLR [SECCLR | ALRCLR | ACKCLR |

* ACKCLR: Acknowledge Clear
0: No effect.

1. Clears corresponding status flag in the Status Register (RTC_SR).
* ALRCLR: Alarm Clear

0: No effect.

1: Clears corresponding status flag in the Status Register (RTC_SR).
* SECCLR: Second Clear

0: No effect.

1: Clears corresponding status flag in the Status Register (RTC_SR).
e TIMCLR: Time Clear

0: No effect.

1: Clears corresponding status flag in the Status Register (RTC_SR).
» CALCLR: Calendar Clear

0: No effect.

1. Clears corresponding status flag in the Status Register (RTC_SR).

260 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

16.6.9 RTC Interrupt Enable Register
Name: RTC_IER

Address: Ox400E1A80

Access: Write-only
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | - | - |
7 6 5 4 3 2 1 0

| - | - | - | caten | Timen [seceN | AIREN | AcCkeN |

» ACKEN: Acknowledge Update Interrupt Enable
0: No effect.

1. The acknowledge for update interrupt is enabled.
* ALREN: Alarm Interrupt Enable
0: No effect.

1: The alarm interrupt is enabled.

e SECEN: Second Event Interrupt Enable
0: No effect.

1: The second periodic interrupt is enabled.

» TIMEN: Time Event Interrupt Enable

0: No effect.

1: The selected time event interrupt is enabled.
» CALEN: Calendar Event Interrupt Enable
0: No effect.

1. The selected calendar event interrupt is enabled.

11057B-ATARM-28-May-12

ATMEL

261

16.6.10 RTC Interrupt Disable Register
Name: RTC_IDR

Address: Ox400E1A84

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — [- | = | cabis | TiMDis | SECDIS | ALRDIS | ACKDIS |

» ACKDIS: Acknowledge Update Interrupt Disable
0: No effect.

1. The acknowledge for update interrupt is disabled.

» ALRDIS: Alarm Interrupt Disable

0: No effect.

1: The alarm interrupt is disabled.

+ SECDIS: Second Event Interrupt Disable
0: No effect.

1: The second periodic interrupt is disabled.

» TIMDIS: Time Event Interrupt Disable

0: No effect.

1: The selected time event interrupt is disabled.
» CALDIS: Calendar Event Interrupt Disable
0: No effect.

1. The selected calendar event interrupt is disabled.

262 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

16.6.11 RTC Interrupt Mask Register
Name: RTC_IMR

Address: Ox400E1A88

Access: Read-only
31 30 29 28 27 26 25 24
- T - T - [- T - - - S
23 22 21 20 19 18 17 16
- T - T - T - T - - - S
15 14 13 12 11 10 9 8
- T - T - [- T - - - S
7 6 5 4 3 2 1 0
| — | — | — | CAL | TIM SEC ALR ACK |

» ACK: Acknowledge Update Interrupt Mask
0: The acknowledge for update interrupt is disabled.

1. The acknowledge for update interrupt is enabled.
* ALR: Alarm Interrupt Mask

0: The alarm interrupt is disabled.

1: The alarm interrupt is enabled.

e SEC: Second Event Interrupt Mask

0: The second periodic interrupt is disabled.

1: The second periodic interrupt is enabled.

e TIM: Time Event Interrupt Mask

0: The selected time event interrupt is disabled.

1: The selected time event interrupt is enabled.

» CAL: Calendar Event Interrupt Mask

0: The selected calendar event interrupt is disabled.

1. The selected calendar event interrupt is enabled.

11057B-ATARM-28-May-12

ATMEL

263

16.6.12 RTC Valid Entry Register
Name: RTC_VER

Address: 0x400E1A8C
Access: Read-only

31 30 29 28 27 26 25

24

23 22 21 20 19 18 17

16

15 14 13 12 11 10 9

7 6 5 4 3 2 1

| _ [— [- | N | NVCALALR | NVTIMALR | NVCAL

NVTIM

* NVTIM: Non-valid Time
0: No invalid data has been detected in RTC_TIMR (Time Register).

1. RTC_TIMR has contained invalid data since it was last programmed.

* NVCAL: Non-valid Calendar

0: No invalid data has been detected in RTC_CALR (Calendar Register).

1: RTC_CALR has contained invalid data since it was last programmed.

* NVTIMALR: Non-valid Time Alarm

0: No invalid data has been detected in RTC_TIMALR (Time Alarm Register).

1: RTC_TIMALR has contained invalid data since it was last programmed.
 NVCALALR: Non-valid Calendar Alarm

0: No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).

1: RTC_CALALR has contained invalid data since it was last programmed.

264 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

16.6.13 RTC Write Protect Mode Register

Name: RTC_WPMR

Address: 0x400E1B44

Access: Read-write
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

— — — — — — WPEN |

« WPEN: Write Protect Enable

0: Disables the Write Protect if WPKEY corresponds to 0x525443 (“RTC” in ASCII).

1: Enables the Write Protect if WPKEY corresponds to 0x525443 (“RTC” in ASCII).

Protects the registers:

“RTC Mode Register” on page 254
“RTC Time Alarm Register” on page 257
“RTC Calendar Alarm Register” on page 258

11057B-ATARM-28-May-12

ATMEL

265

ATMEL

266 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

17. Watchdog Timer (WDT)

17.1 Description

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It features a 12-bit down counter that allows a watchdog period of up to 16 seconds
(slow clock at 32.768 kHz). It can generate a general reset or a processor reset only. In addition,
it can be stopped while the processor is in debug mode or idle mode.

17.2 Embedded Characteristics

« 12-bit Key-protected Programmable Counter
» Provides Reset or Interrupt Signals to the System

« Counter May Be Stopped While the Processor is in Debug State or in Idle Mode
« AMBA™-compliant Interface

— Interfaces to the ARM® Advanced Peripheral Bus
17.3 Block Diagram

Figure 17-1. Watchdog Timer Block Diagram

write WDT_MR
WDT_MR
WDT_CR WDV
|WDRSTT| reload - l

[\1_0;

12-bit Down
Counter
WDT_MR
- reload
WDD Current .
Value < 1/128 SLCK

A

<=WDD

WDT_MR

1
o

wdt_int

EV WDRSTEN
" N wdt_fault
I_J N\ (to Reset Controller)
\ set
WDERRI
read WDT_SR reset WDFIEN
or ®

| WDUNF |4D
set reset r
reset WDT_MR

AImEl@ 267

11057B-ATARM-28-May-12

ATMEL

17.4 Functional Description

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It is supplied with VDDCORE. It restarts with initial values on processor reset.

The Watchdog is built around a 12-bit down counter, which is loaded with the value defined in
the field WDV of the Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock
divided by 128 to establish the maximum Watchdog period to be 16 seconds (with a typical Slow
Clock of 32.768 kHz).

After a Processor Reset, the value of WDV is 0xFFF, corresponding to the maximum value of
the counter with the external reset generation enabled (field WDRSTEN at 1 after a Backup
Reset). This means that a default Watchdog is running at reset, i.e., at power-up. The user must
either disable it (by setting the WDDIS bit in WDT_MR) if he does not expect to use it or must
reprogram it to meet the maximum Watchdog period the application requires.

The Watchdog Mode Register (WDT_MR) can be written only once. Only a processor reset
resets it. Writing the WDT_MR register reloads the timer with the newly programmed mode
parameters.

In normal operation, the user reloads the Watchdog at regular intervals before the timer under-
flow occurs, by writing the Control Register (WDT_CR) with the bit WDRSTT to 1. The
Watchdog counter is then immediately reloaded from WDT_MR and restarted, and the Slow
Clock 128 divider is reset and restarted. The WDT_CR register is write-protected. As a result,
writing WDT_CR without the correct hard-coded key has no effect. If an underflow does occur,
the “wdt_fault” signal to the Reset Controller is asserted if the bit WDRSTEN is set in the Mode
Register (WDT_MR). Moreover, the bit WDUNF is set in the Watchdog Status Register
(WDT_SR).

To prevent a software deadlock that continuously triggers the Watchdog, the reload of the
Watchdog must occur while the Watchdog counter is within a window between 0 and WDD,
WDD is defined in the WatchDog Mode Register WDT_MR.

Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD
results in a Watchdog error, even if the Watchdog is disabled. The bit WDERR is updated in the
WDT_SR and the “wdt_fault” signal to the Reset Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the
WDV value. In such a configuration, restarting the Watchdog Timer is permitted in the whole
range [0; WDV] and does not generate an error. This is the default configuration on reset (the
WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an inter-
rupt, provided the bit WDFIEN is set in the mode register. The signal “wdt_fault” to the reset
controller causes a Watchdog reset if the WDRSTEN bit is set as already explained in the reset
controller programmer datasheet. In that case, the processor and the Watchdog Timer are reset,
and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared,
and the “wdt_fault” signal to the reset controller is deasserted.

Writing the WDT_MR reloads and restarts the down counter.

While the processor is in debug state or in idle mode, the counter may be stopped depending on
the value programmed for the bits WDIDLEHLT and WDDBGHLT in the WDT_MR.

268 S A M 3XI A ___|]
11057B-ATARM-28-May-12

Figure 17-2. Watchdog Behavior

Watchdog Error

if WDRSTEN is 1

Watchdog Underflow —

FFF.
Normal behavior if WDRSTEN is 0
WDV- \ ~
Forbidden
Window -t
WDD Vol
Permitted \ \ \ \
Window
\ \ / / v
0
Watchd WDT_CR =WDRSTT
o atchdog

Fault

11057B-ATARM-28-May-12

ATMEL

SAM3X/A

269

ATMEL

17.5 Watchdog Timer (WDT) User Interface

Table 17-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register WDT_CR Write-only -

0x04 Mode Register WDT_MR Read-write Once Ox3FFF_2FFF
0x08 Status Register WDT_SR Read-only 0x0000_0000

270 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

17.5.1 Watchdog Timer Control Register

Name: WDT_CR

Address: 0x400E1A50

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

- T - T - — T - - — T -]
15 14 13 12 11 10 9 8

- T - T - SR - S
7 6 5 4 3 2 1 0

- T - T - — T - - = worsTT]

« WDRSTT: Watchdog Restart

0: No effect.

1: Restarts the Watchdog.

 KEY: Password

Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

11057B-ATARM-28-May-12

ATMEL

271

17.5.2 Watchdog Timer Mode Register
Name: WDT_MR

Address: Ox400E1A54

Access: Read-write Once
31 30 29 28 27 26 25 24

| [[WDIDLEHLT | WDDBGHLT WDD |
23 22 21 20 19 18 17 16

| WDD |
15 14 13 12 11 10 9 8

[wDDIS WDRPROC | WDRSTEN WDFIEN WDV |
7 6 5 4 3 2 1 0

| WDV |

 WDV: Watchdog Counter Value
Defines the value loaded in the 12-bit Watchdog Counter.

* WDFIEN: Watchdog Fault Interrupt Enable

0: A Watchdog fault (underflow or error) has no effect on interrupt.

1: A Watchdog fault (underflow or error) asserts interrupt.

« WDRSTEN: Watchdog Reset Enable

0: A Watchdog fault (underflow or error) has no effect on the resets.

1: A Watchdog fault (underflow or error) triggers a Watchdog reset.

+ WDRPROC: Watchdog Reset Processor

0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset.

» WDD: Watchdog Delta Value

Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, writing WDT_CR with WDRSTT = 1 restarts the timer.
If the Watchdog Timer value is greater than WDD, writing WDT_CR with WDRSTT = 1 causes a Watchdog error.
» WDDBGHLT: Watchdog Debug Halt

0: The Watchdog runs when the processor is in debug state.

1: The Watchdog stops when the processor is in debug state.

« WDIDLEHLT: Watchdog Idle Halt

0: The Watchdog runs when the system is in idle mode.

1: The Watchdog stops when the system is in idle state.

272 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

« WDDIS: Watchdog Disable
0: Enables the Watchdog Timer.

1: Disables the Watchdog Timer.

AImEl@ 273

11057B-ATARM-28-May-12

ATMEL

17.5.3 Watchdog Timer Status Register
Name: WDT_SR

Address: Ox400E1A58

11057B-ATARM-28-May-12

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - WDERR | WDUNF |

 WDUNF: Watchdog Underflow

0: No Watchdog underflow occurred since the last read of WDT_SR.

1: At least one Watchdog underflow occurred since the last read of WDT_SR.

 WDERR: Watchdog Error

0: No Watchdog error occurred since the last read of WDT_SR.

1: At least one Watchdog error occurred since the last read of WDT_SR.

274 SAMSX/ A |

s S A VI3 X/A

18. Supply Controller (SUPC)

18.1 Description

The Supply Controller (SUPC) controls the supply voltage of the Core of the system and man-
ages the Backup Low Power Mode. In this mode, the current consumption is reduced to a few
microamps for Backup power retention. Exit from this mode is possible on multiple wake-up
sources including events on FWUP or WKUP pins, or a Clock alarm. The SUPC also generates
the Slow Clock by selecting either the Low Power RC oscillator or the Low Power Crystal
oscillator.

18.2 Embedded Characteristics

* Manages the Core Power Supply VDDCORE and the Backup Low Power Mode by
Controlling the Embedded Voltage Regulator

» Generates the Slow Clock SLCK, by Selecting Either the 22-42 kHz Low Power RC Oscillator
or the 32 kHz Low Power Crystal Oscillator

 Supports Multiple Wake Up Sources, for Exit from Backup Low Power Mode
— Force Wake Up Pin, with Programmable Debouncing
— 16 Wake Up Inputs, with Programmable Debouncing
— Real Time Clock Alarm
— Real Time Timer Alarm

— Supply Monitor Detection on VDDUTMI, with Programmable Scan Period and
Voltage Threshold

* A Supply Monitor Detection on VDDUTMI or a Brownout Detection on VDDCORE can Trigger
a Core Reset

« Embeds:
— One 22 to 42 kHz Low Power RC Oscillator
— One 32 kHz Low Power Crystal Oscillator
— One Zero-Power Power-On Reset Cell

— One Software Programmable Supply Monitor, on VDDUTMI Located in Backup
Section

— One Brownout Detector on VDDCORE Located in the Core

AImEl@ 275

11057B-ATARM-28-May-12

ATMEL

18.3 Block Diagram

Figure 18-1. Supply Controller Block Diagram

VDDBU VDDIN

vr_standby VDDOUT
FWUP vr_vdd Software Controlled
7 Gl Voltage Regulator | I- ey
1
SHDN 1
< WKUPO - WKUP15
NRSTB Supply :
Controller VDDIO 1
1
1
PIOABIC
Input/ Output Bufers Blox 1
Zero-Power 1
Power-on Reset 1
VDDANA I
I D 1
1
General Purpose —D ADVREF 1
Backup Registers ADC (front-end)
—l I ADX 1
DAC (front-end) 1
DACx 1
SLCK rtc_alarm
RTC sm_in 1
= VDDUTMI
Supply 1
sm_on Monitor 1
1
SLCK rtt_alarm 1
1
1
osc32k_xtal_en 1
vddcore_nreset VDDCORE 1
XTALSEL
XIN32 xtal 32 kHZ T N]
Oscillator
XOUT32
bodcore_on Brownout
Embedded bodcore_in Detector
32kHz RC supc_interrupt
Oscillator
>

<> SRAM e—

Backup Power Supply

Peripherals [

—> proc_nreset
vddcore_nreset Reset - = i
= Controller [periph_nreset Cortex-M3 Matrix

[—> ice_nreset
NRST | |‘ > - _ o | Peripheral

I Bridge

FSTTO - FSTT150) D > [<€P>| Flash frmd
Embedded sleie
12/8/4 MHz N
RC Main Clock " -
Oscillator MAINCK Power as't\;(r:(li ocl
XIN D_ Management|
3-20MHz | Controller
XOUT D XTAL Oscillator
MAINCK PLLACK Watchdog
—>
PLLA SICR Timer
MAINCK UPLLCK
UPLL Core Power Supply

FSTTO - FSTT15 are possible Fast Startup Sources, generated by WKUPO-WKUP15 Pins,
but are not physical pins.

276 S A M SX/ A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

18.4 Supply Controller Functional Description

18.4.1 Supply Controller Overview
The device can be divided into two power supply areas:

» The Backup VDDBU Power Supply: including the Supply Controller, a part of the Reset
Controller, the Slow Clock switch, the General Purpose Backup Registers, the Supply
Monitor and the Clock which includes the Real Time Timer and the Real Time Clock

» The Core Power Supply: including the other part of the Reset Controller, the Brownout
Detector, the Processor, the SRAM memory, the FLASH memory and the Peripherals

The Supply Controller (SUPC) controls the supply voltage of the core power supply. The SUPC
intervenes when the VDDUTMI power supply rises (when the system is starting) or when the
Backup Low Power Mode is entered.

The SUPC also integrates the Slow Clock generator which is based on a 32 kHz crystal oscilla-
tor and an embedded 32 kHz RC oscillator. The Slow Clock defaults to the RC oscillator, but the
software can enable the crystal oscillator and select it as the Slow Clock source.

The Supply Controller and the VDDUTMI power supply have a reset circuitry based on the
NRSTB pin and a zero-power power-on reset cell. The zero-power power-on reset allows the
SUPC to start properly as soon as the VDDUTMI voltage becomes valid. The NRSTB pin allows
to reset the system from outside.

At startup of the system, once the backup voltage VDDUTMI is valid and the reset pin NRSTB is
not driven low and the embedded 32 kHz RC oscillator is stabilized, the SUPC starts up the core
by sequentially enabling the internal Voltage Regulator, waiting that the core voltage VDDCORE
is valid, then releasing the reset signal of the core “vddcore_nreset” signal.

Once the system has started, the user can program a supply monitor and/or a brownout detec-
tor. If the supply monitor detects a voltage on VDDUTMI that is too low, the SUPC can assert the
reset signal of the core “vddcore_nreset” signal until VDDUTMI is valid. Likewise, if the brownout
detector detects a core voltage VDDCORE that is too low, the SUPC can assert the reset signal
“vddcore_nreset” until VDDCORE is valid.

When the Backup Low Power Mode is entered, the SUPC sequentially asserts the reset signal
of the core power supply “vddcore_nreset” and disables the voltage regulator, in order to supply
only the VDDUTMI power supply. In this mode the current consumption is reduced to a few
microamps for Backup part retention. Exit from this mode is possible on multiple wake-up
sources including an event on FWUP pin or WKUP pins, or a Clock alarm. To exit this mode, the
SUPC operates in the same way as system startup.

AImEl@ 277

11057B-ATARM-28-May-12

18.4.2

18.4.3

278

ATMEL

Slow Clock Generator

The Supply Controller embeds a slow clock generator that is supplied with the VDDBU power
supply. As soon as the VDDBU is supplied, both the crystal oscillator and the embedded RC
oscillator are powered up, but only the embedded RC oscillator is enabled. This allows the slow
clock to be valid in a short time (about 100 ps).

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more
accurate frequency. The command is made by writing the Supply Controller Control Register
(SUPC_CR) with the XTALSEL bit at 1. This results in a sequence which first enables the crystal
oscillator, then waits for 32,768 slow clock cycles, then switches the slow clock on the output of
the crystal oscillator and then disables the RC oscillator to save power. The switch of the slow
clock source is glitch free. The OSCSEL bit of the Supply Controller Status Register (SUPC_SR)
allows knowing when the switch sequence is done.

Coming back on the RC oscillator is only possible by shutting down the VDDBU power supply.

If the user does not need the crystal oscillator, the XIN32 and XOUT32 pins should be left
unconnected.

The user can also set the crystal oscillator in bypass mode instead of connecting a crystal. In
this case, the user has to provide the external clock signal on XIN32. The input characteristics of
the XIN32 pin are given in the product electrical characteristics section. In order to set the
bypass mode, the OSCBYPASS bit of the Supply Controller Mode Register (SUPC_MR) needs
to be set at 1.

Voltage Regulator Control/Backup Low Power Mode

The Supply Controller can be used to control the embedded 1.8V voltage regulator.

The voltage regulator automatically adapts its quiescent current depending on the required load
current. Please refer to the electrical characteristics section.

The programmer can switch off the voltage regulator, and thus put the device in Backup mode,
by writing the Supply Controller Control Register (SUPC_CR) with the VROFF bit at 1.

This can be done also by using WFE (Wait for Event) Cortex-M3 instruction with the deep mode
bit set to 1.

The Backup mode can also be entered by executing the WFI (Wait for Interrupt) or WFE (Wait for
Event) Cortex-M3 instructions. To select the Backup mode entry mechanism, two options are
available, depending on the SLEEPONEXIT bit in the Cortex-M3 System Control register:
« Sleep-now: if the SLEEPONEXIT bit is cleared, the device enters Backup mode as soon as
the WFI or WFE instruction is executed.

« Sleep-on-exit: if the SLEEPONEXIT bit is set when the WFI instruction is executed, the
device enters Backup mode as soon as it exits the lowest priority ISR.

This asserts the vddcore_nreset signal after the write resynchronization time which lasts, in the
worse case, two slow clock cycles. Once the vddcore_nreset signal is asserted, the processor
and the peripherals are stopped one slow clock cycle before the core power supply shuts off.

When the user does not use the internal voltage regulator and wants to supply VDDCORE by an
external supply, it is possible to disable the voltage regulator. Note that it is different from the
Backup mode. Depending on the application, disabling the voltage regulator can reduce power
consumption as the voltage regulator input (VDDIN) is shared with the ADC and DAC. This is
done through ONREG bit in SUPC_MR.

S A M X A ——— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

18.4.4 Using Backup Batteries/Backup Supply

11057B-ATARM-28-May-12

The product can be used with or without backup batteries, or more generally a backup supply.
When a backup supply is used (See Figure 18-2), only VDDBU voltage is present in Backup
mode and no other external supply is applied on the chip. In this case the user needs to clear
VDDIORDY bit in the Supply Controller Mode Register (SUPC_MR) at least two slow clock peri-
ods before VDDIO voltage is removed. When waking up from Backup mode, the programmer
needs to set VDDIORDY.

Figure 18-2. Separated Backup Supply Powering Scheme
FWUP III:
SHDN E:l

Backup Batteries VDDBU :
' :
VDDUTMI |I|

E—

VDDANA
——{]

VDDIO |I|
/ VDDIN Dﬁ

Main Supply (1.8V-3.6V) | E R\écg’;fj‘gti r
VDDOUT E:I

I

VDDCORE [E:l

VDDPLL III:

Note: Restrictions: With Main Supply < 3V, some peripherals such as USB and ADC might not be oper-
ational. Refer to the DC Characteristics of the product for actual possible ranges for such
peripherals.

When a separated backup supply for VDDBU is not used (See Figure 18-3), since the external

voltage applied on VDDIO is kept, all of the 1/O configurations (i.e. WKUP pin configuration) are

kept during backup mode. When not using backup batteries, VDDIORDY is set so the user does
not need to program it.

AImEl@ 279

ATMEL

Figure 18-3. No Separated Backup Supply Powering Scheme
VDDBU E:l
VDDUTMI |I|

VDDANA :
—[

VDDIO -
—{]

Main Supply (1.8V-3.6V) VDDIN D
lI :
' Voltage
. Regulator
VDDOUT E:l

I

VDDCORE m

VDDPLL III:

Note: Restrictions: With Main Supply < 3V, some peripherals such as USB and ADC might not be oper-
ational. Refer to the DC Characteristics of the product for actual possible ranges for such
peripherals.

18.4.5 Supply Monitor

The Supply Controller embeds a supply monitor which is located in the VDDBU Backup Power
Supply and which monitors VDDUTMI power supply.

The supply monitor can be used to prevent the processor from falling into an unpredictable state
if the Main power supply drops below a certain level.

The threshold of the supply monitor is programmable. It can be selected from 1.9V to 3.4V by
steps of 100 mV. This threshold is programmed in the SMTH field of the Supply Controller Sup-
ply Monitor Mode Register (SUPC_SMMR).

The supply monitor can also be enabled during one slow clock period on every one of either 32,
256 or 2048 slow clock periods, according to the choice of the user. This can be configured by
programming the SMSMPL field in SUPC_SMMR.

Enabling the supply monitor for such reduced times allows to divide the typical supply monitor
power consumption respectively by factors of 32, 256 or 2048, if the user does not need a con-
tinuous monitoring of the VDDUTMI power supply.

280 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

A supply monitor detection can either generate a reset of the core power supply or a wake up of
the core power supply. Generating a core reset when a supply monitor detection occurs is
enabled by writing the SMRSTEN bit to 1 in SUPC_SMMR.

Waking up the core power supply when a supply monitor detection occurs can be enabled by
programming the SMEN bit to 1 in the Supply Controller Wake Up Mode Register
(SUPC_WUMR).

The Supply Controller provides two status bits in the Supply Controller Status Register for the
supply monitor which allows to determine whether the last wake up was due to the supply

monitor:

« The SMOS bit provides real time information, which is updated at each measurement cycle

or updated at each Slow Clock cycle, if the measurement is continuous.

» The SMS bit provides saved information and shows a supply monitor detection has occurred
since the last read of SUPC_SR.

The SMS bit can generate an interrupt if the SMIEN bit is set to 1 in the Supply Controller Supply
Monitor Mode Register (SUPC_SMMR).

Figure 18-4. Supply Monitor Status Bit and Associated Interrupt

Supply Monitor ON

3.3V

Threshold

ov

SMS and SUPC interrupt

11057B-ATARM-28-May-12

Continuous Sampling (SMSMPL = 1)

I_l I_lk Periodic Sampling I_l

l Read SUPC_SR

ATMEL

281

ATMEL

18.4.6 Backup Power Supply Reset

18.4.6.1 Raising the Backup Power Supply
As soon as the backup voltage VDDUTMI rises, the RC oscillator is powered up and the zero-
power power-on reset cell maintains its output low as long as VDDUTMI has not reached its tar-
get voltage. During this time, the Supply Controller is entirely reset. When the VDDUTMI voltage
becomes valid and zero-power power-on reset signal is released, a counter is started for 5 slow
clock cycles. This is the time it takes for the 32 kHz RC oscillator to stabilize.

After this time, the SHDN pin is asserted and the voltage regulator is enabled. The core power
supply rises and the brownout detector provides the bodcore_in signal as soon as the core volt-
age VDDCORE is valid. This results in releasing the vddcore_nreset signal to the Reset
Controller after the bodcore_in signal has been confirmed as being valid for at least one slow
clock cycle.

Figure 18-5. Raising the VDDUTMI Power Supply

7 x Slow Clock Cycles Ton Voltage 3 x Slow Clock 3 x Slow Clock 6.5 x Slow Clock
Regulator Cycles Cycles Cycles

uUuuryryryry gy Ly e

Backup Power Supply R—

Zero-Power Power-On
Reset Cell output A

|
|
|
|
Zero-Power POR |
|
|
|
|

22 -42 kHz RC / ”lll”ll”

Oscillator output M

T I

SHDN / vr_on

Core Power Supply

Oscillator output
1] R

I
|1
1T
I
|1
|l
NRST Il | 1
(|
(|
T
(|
Il
[

bodcore_in

vddcore_nreset

LT

periph_nreset

proc_nreset

Note: After “proc_nreset” rising, the core starts fecthing instructions from Flash at 4 MHz.

282 S A M SX/ A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

18.4.6.2 NRSTB Asynchronous Reset Pin
The NRSTB pin is an asynchronous reset input, which acts exactly like the zero-power power-on
reset cell.

As soon as NRSTB is tied to GND, the supply controller is reset generating in turn, a reset of the
whole system.

When NRSTB is released, the system can start as described in Section 18.4.6.1 "Raising the
Backup Power Supply”.

The NRSTB pin does not need to be driven during power-up phase to allow a reset of the sys-
tem, it is done by the zero-power power-on cell.

Figure 18-6. NRSTB Reset

30 Slow Clock Cycles = about 1ms between 2 and 3 Slow Clock Cycles

< [ol e

NRSTB

32 kHz Low Power Crystal I"l_l‘\

Oscillator output

FU L

SHDN / vr_standby

vddcore_nreset

SN NpNaln iRy Ealnlls

|
|
|
|
I
bodcore_in I
|
I
|
1
I

Note: periph_nreset, ice_reset and proc_nreset are not shown, but are asserted low thanks to the vddcore_nreset signal controlling
the Reset controller.

18.4.6.3 SHDN output pin
As shown in Figure 18-6, the SHDN pin acts like the vr_standby signal making it possible to use
the SHDN pin to control external voltage regulator with shutdown capabilities.

18.4.7 Core Reset

The Supply Controller manages the vddcore_nreset signal to the Reset Controller, as described
previously in Section 18.4.6 "Backup Power Supply Reset”. The vddcore_nreset signal is nor-
mally asserted before shutting down the core power supply and released as soon as the core
power supply is correctly regulated.

There are two additional sources which can be programmed to activate vddcore _nreset:

« a supply monitor detection
« a brownout detection

184.7.1 Supply Monitor Reset
The supply monitor is capable of generating a reset of the system. This can be enabled by set-
ting the SMRSTEN bit in the Supply Controller Supply Monitor Mode Register (SUPC_SMMR).

If SMRSTEN is set and if a supply monitor detection occurs, the vddcore_nreset signal is imme-
diately activated for a minimum of 1 slow clock cycle.

AImEl@ 283

11057B-ATARM-28-May-12

ATMEL

18.4.7.2 Brownout Detector Reset
The brownout detector provides the bodcore_in signal to the SUPC which indicates that the volt-
age regulation is operating as programmed. If this signal is lost for longer than 1 slow clock
period while the voltage regulator is enabled, the Supply Controller can assert vddcore_nreset.
This feature is enabled by writing the bit, BODRSTEN (Brownout Detector Reset Enable) to 1 in
the Supply Controller Mode Register (SUPC_MR).

If BODRSTEN is set and the voltage regulation is lost (output voltage of the regulator too low),
the vddcore_nreset signal is asserted for a minimum of 1 slow clock cycle and then released if
bodcore_in has been reactivated. The BODRSTS bit is set in the Supply Controller Status Reg-
ister (SUPC_SR) so that the user can know the source of the last reset.

Until bodcore_in is deactivated, the vddcore_nreset signal remains active.

18.4.8 Wake Up Sources

The wake up events allow the device to exit backup mode. When a wake up event is detected,
the Supply Controller performs a sequence which automatically reenables the core power
supply.

Figure 18-7. Wake Up Source

B
sm_int -

G
rtc_alarm /

EEI R
tt_al Supply
-2 arm—_/ Restart

FWUPDBC
SLCK
FWUPEN L FWUP
Falling Debouncer
Edge

Sl

FWUP | |— o
v Detector
WKUPTO
[wkupENo | | wkuPIso
Falling/Rising L
wkupo [|—{ Edge
Detector WKUPDBC
WKUPT1 [wkupen | ['wkupist | SLIi'i> WKUPS
Falling/Rising Debouncer ®
| Detector
I
: WKUPTI5 [wKUPEN1S] [WKUPIS15]
I
Falling/Rising I_
wkupis [— Edge

Detector

280 SAM3X/A

11057B-ATARM-28-May-12

s S A VI3 X/A

18.4.8.1 Force Wake Up

The FWUP pin is enabled as a wake up source by writing the FWUPEN bit to 1 in the Supply
Controller Wake Up Mode Register (SUPC_WUMR). Then, the FWUPDBC field in the same
register selects the debouncing period, which can be selected between 3, 32, 512, 4,096 or
32,768 slow clock cycles. This corresponds respectively to about 100 us, about 1 ms, about 16
ms, about 128 ms and about 1 second (for a typical slow clock frequency of 32 kHz). Program-
ming FWUPDBC to 0x0 selects an immediate wake up, i.e., the FWUP must be low during a
minimum of one slow clock period to wake up the core power supply.

If the FWUP pin is asserted for a time longer than the debouncing period, a wake up of the core
power supply is started and the FWUP bit in the Supply Controller Status Register (SUPC_SR)
is set and remains high until the register is read.

18.4.8.2 Wake Up Inputs

The wake up inputs, WKUPO to WKUP15, can be programmed to perform a wake up of the core
power supply. Each input can be enabled by writing to 1 the corresponding bit, WKUPENO to
WKUPEN 15, in the Wake Up Inputs Register (SUPC_WUIR). The wake up level can be
selected with the corresponding polarity bit, WKUPPLO to WKUPPL15, also located in
SUPC_WUIR.

All the resulting signals are wired-ORed to trigger a debounce counter, which can be pro-
grammed with the WKUPDBC field in the Supply Controller Wake Up Mode Register
(SUPC_WUMR). The WKUPDBC field can select a debouncing period of 3, 32, 512, 4,096 or
32,768 slow clock cycles. This corresponds respectively to about 100 us, about 1 ms, about
16 ms, about 128 ms and about 1 second (for a typical slow clock frequency of 32 kHz). Pro-
gramming WKUPDBC to 0x0 selects an immediate wake up, i.e., an enabled WKUP pin must be
active according to its polarity during a minimum of one slow clock period to wake up the core
power supply.

If an enabled WKUP pin is asserted for a time longer than the debouncing period, a wake up of
the core power supply is started and the signals, WKUPO to WKUP15 as shown in Figure 18-7,
are latched in the Supply Controller Status Register (SUPC_SR). This allows the user to identify
the source of the wake up, however, if a new wake up condition occurs, the primary information
is lost. No new wake up can be detected since the primary wake up condition has disappeared.

18.4.8.3 Clock Alarms

The RTC and the RTT alarms can generate a wake up of the core power supply. This can be
enabled by writing respectively, the bits RTCEN and RTTEN to 1 in the Supply Controller Wake
Up Mode Register (SUPC_WUMR).

The Supply Controller does not provide any status as the information is available in the User
Interface of either the Real Time Timer or the Real Time Clock.

18.4.8.4 Supply Monitor Detection

11057B-ATARM-28-May-12

The supply monitor can generate a wakeup of the core power supply. See Section 18.4.5 "Sup-
ply Monitor”.

AImEl@ 285

ATMEL

18.5 Supply Controller (SUPC) User Interface
The User Interface of the Supply Controller is part of the System Controller User Interface.

18.5.1 System Controller (SYSC) User Interface

Table 18-1. System Controller Registers

Offset System Controller Peripheral Name
0x00-0x0c Reset Controller RSTC
0x10-0x2C Supply Controller SUPC
0x30-0x3C Real Time Timer RTT
0x50-0x5C Watchdog WDT
0x60-0x7C Real Time Clock RTC
0x90-0xDC General Purpose Backup Register GPBR

18.5.2 System Controller (SYSC) User Interface

Table 18-2. Register Mapping

Offset Register Name Access Reset
0x00 Supply Controller Control Register SUPC_CR Write-only N/A
0x04 Supply Controller Supply Monitor Mode Register SUPC_SMMR Read-write 0x0000_0000
0x08 Supply Controller Mode Register SUPC_MR Read-write 0x0000_5A00
0x0C Supply Controller Wake Up Mode Register SUPC_WUMR Read-write 0x0000_0000
0x10 Supply Controller Wake Up Inputs Register SUPC_WUIR Read-write 0x0000_0000
0x14 Supply Controller Status Register SUPC_SR Read-only 0x0000_0800
0x18 Reserved

286 SAMSX/ /A

11057B-ATARM-28-May-12

s S A VI3 X/A

18.5.3 Supply Controller Control Register
Name: SUPC_CR

Address: Ox400E1A10

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I I - |
7 6 5 4 3 2 1 0

| - | - | - | - | XTALSEL | VROFF | - | - |

* VROFF: Voltage Regulator Off
0 (NO_EFFECT) = no effect.

1 (STOP_VREG) = if KEY is correct, asserts vddcore_nreset and stops the voltage regulator.

» XTALSEL: Crystal Oscillator Select
0 (NO_EFFECT) = no effect.
1 (CRYSTAL_SEL) = if KEY is correct, switches the slow clock on the crystal oscillator output.

» KEY: Password
Should be written to value OxA5. Writing any other value in this field aborts the write operation.

AImEl@ 287

11057B-ATARM-28-May-12

ATMEL

18.5.4 Supply Controller Supply Monitor Mode Register
Name: SUPC_SMMR

Address: Ox400E1A14

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | SMIEN | SMRSTEN | - | SMSMPL |
7 6 5 4 3 2 1 0

I - I - I - I - I SMTH |

e SMTH: Supply Monitor Threshold

Value Name Description
0x0 1.9V 19V
Ox1 2 0V 20V
0x2 2_1V 21V
0x3 2.2V 22V
Ox4 2 3V 2.3V
0x5 2 4V 24V
0x6 2.5V 25V
0x7 2 6V 26V
0x8 2.7V 2.7V
0x9 2 8V 28V
OxA 2 9V 29V
0xB 3.0V 3.0V
0xC 3.1V 31V
0xD 3.2V 3.2V
OxE 3 3V 3.3V
OxF 3 4V 34V

288 S A M 3XI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

e SMSMPL: Supply Monitor Sampling Period

Value Name Description
0x0 SMD Supply Monitor disabled
ox1 CSM Continuous Supply Monitor
0x2 32SLCK Supply Monitor enabled one SLCK period every 32 SLCK periods
0x3 256SLCK Supply Monitor enabled one SLCK period every 256 SLCK periods
0x4 2048SLCK Supply Monitor enabled one SLCK period every 2,048 SLCK periods
0x5-0x7 Reserved Reserved

« SMRSTEN: Supply Monitor Reset Enable
0 (NOT_ENABLE) = the core reset signal “vddcore_nreset” is not affected when a supply monitor detection occurs.

1 (ENABLE) = the core reset signal, vddcore_nreset is asserted when a supply monitor detection occurs.
* SMIEN: Supply Monitor Interrupt Enable
0 (NOT_ENABLE) = the SUPC interrupt signal is not affected when a supply monitor detection occurs.

1 (ENABLE) = the SUPC interrupt signal is asserted when a supply monitor detection occurs.

AImEl@ 289

11057B-ATARM-28-May-12

18.5.5 Supply Controller Mode Register
Name: SUPC_MR

Address: Ox400E1A18

Access: Read-write
31 30 29 28 27 26 25 24
| KEY |
23 22 21 20 19 18 17 16
| — — - OSCBYPASS — - - - |
15 14 13 12 11 10 9 8
VDDIORDY
- ONREG BODDIS BODRSTEN - - - -
7 6 5 4 3 2 1 0

« BODRSTEN: Brownout Detector Reset Enable
0 (NOT_ENABLE) = the core reset signal “vddcore_nreset” is not affected when a brownout detection occurs.

1 (ENABLE) = the core reset signal, vddcore_nreset is asserted when a brownout detection occurs.

» BODDIS: Brownout Detector Disable

0 (ENABLE) = the core brownout detector is enabled.

1 (DISABLE) = the core brownout detector is disabled.

» VDDIORDY: VDDIO Ready

0 (vDDIO_REMOVED) = VDDIO is removed (used before going to backup mode when backup batteries are used)
1 (vDDIO_PRESENT) = VDDIO is present (used before going to backup mode when backup batteries are used)
If the backup batteries are not used, VDDIORDY must be kept set to 1.

« ONREG: Voltage Regulator enable

0 (ONREG_UNUSED) = Voltage Regulator is not used

1 (ONREG_USED) = Voltage Regulator is used

» OSCBYPASS: Oscillator Bypass

0 (NO_EFFECT) = no effect. Clock selection depends on XTALSEL value.

1 (BYPASS) = the 32-KHz XTAL oscillator is selected and is put in bypass mode.

» KEY: Password Key
Should be written to value 0xA5. Writing any other value in this field aborts the write operation.

290 S A M SXI A ___|]
11057B-ATARM-28-May-12

s S A VI3 X/A

18.5.6 Supply Controller Wake Up Mode Register
Name: SUPC_WUMR

Address: Ox400E1A1C

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | WKUPDBC | - | FWUPDBC |
7 6 5 4 3 2 1 0

| - | - | - | - | RTCEN | RTTEN SMEN FWUPEN |

« FWUPEN: Force Wake Up Enable
0 (NOT_ENABLE) = the Force Wake Up pin has no wake up effect.

1 (ENABLE) = the Force Wake Up pin low forces the wake up of the core power supply.

* SMEN: Supply Monitor Wake Up Enable

0 (NOT_ENABLE) = the supply monitor detection has no wake up effect.

1 (ENABLE) = the supply monitor detection forces the wake up of the core power supply.
 RTTEN: Real Time Timer Wake Up Enable

0 (NOT_ENABLE) = the RTT alarm signal has no wake up effect.

1 (ENABLE) = the RTT alarm signal forces the wake up of the core power supply.
 RTCEN: Real Time Clock Wake Up Enable

0 (NOT_ENABLE) = the RTC alarm signal has no wake up effect.

1 (ENABLE) = the RTC alarm signal forces the wake up of the core power supply.

« FWUPDBC: Force Wake Up Debouncer Period

Value Name Description
0 IMMEDIATE Immediate, no debouncing, detected active at least on one Slow Clock edge.
1 3_SCLK FWUP shall be low for at least 3 SLCK periods
2 32_SCLK FWUP shall be low for at least 32 SLCK periods
3 512_SCLK FWUP shall be low for at least 512 SLCK periods
4 4096_SCLK FWUP shall be low for at least 4,096 SLCK periods
5 32768_SCLK FWUP shall be low for at least 32,768 SLCK periods
6 Reserved Reserved
7 Reserved Reserved

ATMEL

11057B-ATARM-28-May-12

291

ATMEL

« WKUPDBC: Wake Up Inputs Debouncer Period

Value Name Description
0 IMMEDIATE Immediate, no debouncing, detected active at least on one Slow Clock edge.
1 3_SCLK WKUPXx shall be in its active state for at least 3 SLCK periods
2 32_SCLK WKUPXx shall be in its active state for at least 32 SLCK periods
3 512_SCLK WKUPx shall be in its active state for at least 512 SLCK periods
4 4096_SCLK WKUPXx shall be in its active state for at least 4,096 SLCK periods
5 32768 SCLK WKUPXx shall be in its active state for at least 32,768 SLCK periods
6 Reserved Reserved
7 Reserved Reserved

292 SAM X A e ——————— e —

11057B-ATARM-28-May-12

s S A VI3 X/A

18.5.7 System Controller Wake Up Inputs Register
Name: SUPC_WUIR

Address: Ox400E1A20

Access: Read-write
31 30 29 28 27 26 25 24

| WKUPT15 | WKUPT14 | WKUPT13 | WKUPT12 | WKUPT11 | WKUPT10 | WKUPT9 | WKUPTS8 |
23 22 21 20 19 18 17 16

| WKUPT7 | WKUPT6 | WKUPT5 | WKUPT4 | WKUPT3 | WKUPT2 | WKUPT1 | WKUPTO |
15 14 13 12 11 10 9 8

| WKUPEN15 | WKUPEN14 | WKUPEN13 | WKUPEN12 | WKUPEN11 | WKUPEN10 | WKUPEN9 | WKUPENS |

7 6 5 4 3 2 1 0
| WKUPEN7 | WKUPENG | WKUPEN5 | WKUPEN4 | WKUPEN3 | WKUPEN2 | WKUPEN1 | WKUPENO |

« WKUPENO - WKUPEN15: Wake Up Input Enable 0 to 15
0 (NOT_ENABLE) = the corresponding wake-up input has no wake up effect.

1 (ENABLE) = the corresponding wake-up input forces the wake up of the core power supply.
* WKUPTO - WKUPT15: Wake Up Input Transition 0 to 15

0 (HIGH_TO_LOW) = a high to low level transition on the corresponding wake-up input forces the wake up of the core
power supply.

1 (LOW_TO_HIGH) = a low to high level transition on the corresponding wake-up input forces the wake up of the core
power supply.

AImEl@ 293

11057B-ATARM-28-May-12

ATMEL

18.5.8 Supply Controller Status Register
Name: SUPC_SR

Address: Ox400E1A24

Access: Read-write
31 30 29 28 27 26 25 24

| WKUPIS15 | WKUPIS14 | WKUPIS13 | WKUPIS12 | WKUPIS11 | WKUPIS10 | WKUPIS9 | WKUPISS8 |
23 22 21 20 19 18 17 16

| WKUPIS7 | WKUPIS6 | WKUPIS5 | WKUPIS4 | WKUPIS3 | WKUPIS2 | WKUPIS1 | WKUPISO |
15 14 13 12 11 10 9 8

I - I - I - | Fwupis | - I - I - I - |
7 6 5 4 3 2 1 0

| OSCSEL | SMOS | SMS | SMRSTS | BODRSTS | SMWS | WKUPS | FWUPS |

Note: Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK), the status register flag reset is
taken into account only 2 slow clock cycles after the read of the SUPC_SR.

* FWUPS: FWUP Wake Up Status

0 (NO) = no wake up due to the assertion of the FWUP pin has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to the assertion of the FWUP pin has occurred since the last read of SUPC_SR.
« WKUPS: WKUP Wake Up Status

0 (NO) = no wake up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.
* SMWS: Supply Monitor Detection Wake Up Status

0 (NO) = no wake up due to a supply monitor detection has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to a supply monit